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Abstract—Remaining useful life (RUL) prediction has
been increasingly considered in many industrial fields for
the reliability and safety of their systems. As a data analy-
sis tool of deep learning, deep convolutional neural network
(CNN) shows great potential for RUL prediction. This paper
proposes an intelligent RUL prediction method based on a
double-CNN model architecture. Given the powerful feature
extraction capability of CNN, the proposed method is fed
with original vibration signals with no need to resort to any
feature extractor, which can also retain the useful informa-
tion in maximum. The prediction includes two stages: first,
incipient fault point is identified by the first CNN model and
a proposed “3/5” principle; then, the second CNN model is
constructed for RUL prediction. In practice, RULs of identi-
cal components are different from each other, which poses a
major challenge in RUL prediction. To overcome this prob-
lem, an intermediate reliability variable is first calculated
in this paper, instead of directly predicting the RUL value.
Then, a mapping algorithm is proposed to map reliability
to RUL. To demonstrate the effectiveness of the proposed
method, data of four tests of bearing degradation are utilized
for RUL prediction. Compared with state-of-the-art methods,
the proposed method shows higher prediction accuracy
and robustness. The prediction results and evaluation in-
dexes demonstrated the effectiveness and superiority of the
proposed method.

Index Terms—Convolutional neural network (CNN), deep
learning, prognostic and health management (PHM),
remaining useful life (RUL) prediction.

I. INTRODUCTION

A S AN effective way to avoid unnecessary maintenance
activities and improve safety reliability and availability,

prognostics and health management (PHM) has gained a lot
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of attention in the last few decades, with remaining useful life
(RUL) prediction constituting a challenging prognostic task [1].
A reliable and accurate estimation of RUL not only allows for ef-
fective predictive maintenance, thus protecting the system from
faults and resource wasting, but also can avoid catastrophic fail-
ures and casualties [2], [3]. Therefore, it is important to develop
RUL prediction methods [4].

According to the literature, there are different ways to catego-
rize the RUL prediction methods. In general, they can be clas-
sified as follows: physics-based, data-driven, and hybrid [5].
Physics-based approaches, also known as model-based, take
advantage of prior knowledge on the degradation and failure
mechanisms to model the degradation and failure behavior of
an equipment mathematically [6], e.g., Paris–Erdogan model
[7] and exponential model [8] for crack propagation with parti-
cle filtering used as parameter estimator [9]. However, often in
practice, it is difficult, even impossible, to obtain enough prior
knowledge for physics-based methods. In this case, data-based
approach is proposed as an alternative. It relies on historical
run-to-failure data for estimating the RUL via different machine
learning methods [10], [11]. Most of these methods consist of
two stages: an offline learning with feature extractor and degra-
dation state learner; an online stage for RUL estimation via the
learned model. Support vector regression (SVR) [12] and artifi-
cial neural network (ANN) [13] are two widely used regression
methods. The last method is hybrid, which combines the ad-
vantages of the previous two methods: physics knowledge is
used to build the model, and the parameters are optimized by
data-driven methods for accurate RUL estimation.

Although prognostics methods have been widely studied, they
still suffer from some disadvantages. First, most methods are ap-
plied of feature level. A feature extractor can be beneficial, be-
cause it can transform the original signal into low-dimensional
vectors for easier match or comparison [14]–[16]. However, on
the one hand, it excludes a lot of information during the fea-
ture extraction process, while some information can be useful.
On the other hand, it also makes the prognostic process time-
consuming, because it is often designed entirely handcrafted
and rather specific for every new task. Therefore, although
data-driven methods reduce the dependence on prior knowl-
edge, the results are still highly dependent on experience [17].
Second, most of the prognostic methods do not take into ac-
count the differences between degradation patterns, as well as
the failure threshold (FT), which could influence the prediction
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performance greatly and vary from many internal or external fac-
tors, such as the change of operation condition, mission profile,
or processing technique. Finally, most methods in the literature
only consider the current prediction but ignore the prediction of
previous time, which can also be valuable. As a result, the the-
oretical lifetime of a mechanical equipment can be influenced
greatly by accidental error and noise, and therefore be different
from the actual RUL [18].

Deep learning is a burgeoning new area of artificial intelli-
gence that can learn a hierarchy of features by building high-
level features from low-level ones automatically and accurately
[19]. As a representative deep learning model, convolutional
neural network (CNN) has achieved tremendous success in im-
age recognition and speech tasks, because of its superior feature
extraction and object recognition performances, and is also at-
tracting attention in the industrial field [20]. For instance, a
CNN based on LeNet-5 is proposed for fault diagnosis, which
converts signals into two-dimensional (2-D) images and then
extracts features from these images to eliminate the effect of
handcrafted features [21]. An NB-CNN method is proposed
based on CNN and a Naive Bayes data fusion scheme to ag-
gregate the information extracted from each video frame and
enhance the overall performance of the system [22]. A deep
normalized CNN is proposed in [23] for imbalanced fault clas-
sification of machinery. However, although the application of
CNN has been developed well, there are few research works
about the RUL prediction, which is always a difficult problem.

In this paper, a double-deep CNN framework-based intelli-
gent RUL prediction method is proposed. The proposed method
makes four contributions.

First, the proposed method is a signal-level method, which can
deal with raw signals directly, instead of relying on the feature
extractor. The reduction of the demands for prior knowledge,
physical model, and human labor makes the proposed method
more intelligent and adaptive.

Second, the proposed double-deep learning framework con-
sists of two deep CNN architectures. Different degradation pat-
terns are considered in the proposed framework. Then, the in-
cipient failure (IF) point can be calculated in the first network.
In this way, the RUL can be estimated in the second CNN layer
through its corresponding degradation model from the IF point.

Third, due to changing operational conditions and strong
background noise, the prediction results can be influenced by
abnormal points. In the proposed method, predictions of earlier
times are also taken into account by a weighted algorithm to
mitigate the effects of abnormal points and ensure the stability
of the algorithm performance.

Finally, the RUL of different components, even the same
component of different batches, can be different from different
manufacturing conditions. Therefore, in instead of directly cal-
culating the RUL using deep learning method, the operational
reliability is first computed and, then, mapped to the RUL.

The rest of this paper is organized as follows. In Section
II, the proposed intelligent RUL prediction method based on
deep multi-CNN is described in detail. Then, the model is eval-
uated by accelerated degradation tests of bearing in Section
III. In Section IV, the results are discussed, as well as the

Fig. 1. An illustration of a CNN consisting of a pair of a convolutional
layer and a pooling layer in succession.

comparison with state-of-the-art RUL prediction methods.
Section V concludes this paper.

II. PROPOSED FRAMEWORK

Based on the traditional CNN, a deep double-CNN frame-
work is proposed in this paper for RUL prediction. Two CNN
architectures are integrated in the proposed framework: the first
CNN for incipient failure threshold (IFT) identification, and the
last one for RUL prediction.

A. Convolutional Neural Network

CNN is a special feed-forward neural network that can extract
topological properties from the inputs [24]. Different from the
traditional feed-forward ANN, it simulates three architectural
properties of the visual cortex cell to ensure some degree of shift,
scale, and distortion invariance: local receptive fields, shared
weights, and subsampling [25]. As shown in Fig. 1, there are
two basic modules in CNN, including convolution operation,
which implements the first two properties of CNN, and pooling
for subsampling [26].

Convolution is an operation on two functions. For example,
suppose I is a 2-D image input, and K is a 2-D kernel. The
convolution z of I and K can be calculated as

z[i, j] =
∑

m

∑

n

I[i + m, i + n]K[m,n] = (I ∗ K)[i, j]. (1)

The convolution kernel, also called the weight, slips across the
input image and performs the convolution operation with each
corresponding local receptive field. In this way, the network
greatly reduces the unnecessary parameters because all local
parts can share the same weights and, therefore, avoids the
overfitting problem.

Pooling is another important operation in CNN, through
which the output of the net at a certain location is replaced
with a summary statistic of the nearby outputs. It is performed
mainly to reduce the calculation cost, characterize the transla-
tion invariance, cut down the input dimension, and control the
overfitting risk. Invariance to local translation can be very use-
ful because we care more about whether some feature is present
than exactly where it is [27]: considering an industrial signal
as an example, whether the mechanical component is faulty is
much more important than finding out which part of the signal
shows the failure information.
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The most commonly used pooling operation is max-pooling,
which outputs the maximum number within a rectangular
neighborhood, called the pooling size. In this paper, the max-
pooling operation is used in the deep CNN architecture.

Apart from local receptive fields and shared weights, dropout
is also applied in the proposed method to reduce the risk of
overfitting problem. Dropout refers to dropping out units (hidden
and visible) in a neural network. That is, randomly let some
neurons to be zero. The primary idea of dropout is to randomly
drop components of neural network (outputs) from a layer of
neural network. By dropping a unit out (that is, temporarily
removing it from the network), along with all its incoming and
outgoing connections, the corresponding unit is retained with a
fixed probability independent of other units. The thinned outputs
are then used as input to the next layer. The resulting neural
network is used without dropout.

B. CNN Classification Model for IF Point Identification

The identification of the IF point is the first task of RUL pre-
diction because signals offered before the IF point provide little
information on the degradation process. Finding the IF point is
difficult because the same machines in different conditions have
a large variation in the signals [28]. If the IF point is determined
earlier, the system is likely to give many false alarms; if it is too
late, then some useful signals and information can be lost and
make the prediction less accurate.

The IF point is often determined experimentally due to the
difference between machines at failure [29], [30]. However,
experimentation can be time- and energy-consuming. Therefore,
the proposed framework addresses the problem by automatically
extracting the inherent differences between normal and failure
signals, thus reducing the need for prior knowledge, data, and
experimentation.

This is done through the use of CNN, which is a type of deep
learning model in which trainable filters and local neighbor-
hood pooling operations are applied on raw inputs alternately,
resulting in a hierarchy of increasing complex features [20].

Therefore, CNN is used to identify the IF point in this step.
The degradation patterns are divided into two types: rapid degra-
dation and slow degradation. Two CNN models are trained as
follows:

1) The vibration signals of mechanical components life tests
under these two patterns are collected and saved as the
training data.

2) For each kind of vibration data, the signals in normal stage
are labeled as 0; and those in faulty stage are labeled as
1.

3) These signals are used to train the IFT identification CNN
models to distinguish the faulty and normal signals.

During the RUL prediction process of an unknown test, the
vibration signals are imported into the CNN classification mod-
els successively. When the output of the CNN model becomes
1 from 0, IF point is detected. However, industrial systems are
not ideal model, and they can be always influenced by strong
noise or fickle operational conditions. Even when the system
is normal, the output of the CNN classification model can be
1 due to the influence of accidental error. Therefore, inspired

Fig. 2. Procedure for IF point identification. The label of normal sample
is set to be 0; and the label of faulty sample is set to be 1.

Fig. 3. RMS of two degradation patterns. (a) Sudden degradation.
(b) Slow degradation.

by [31], a “3/5” principle is applied in this step: if for three
times the model output is one in five sequential times, then in-
cipient failure is detected. In this way, the IF point detection
can be more stationary. The flowchart of this step is shown in
Fig. 2. The IF point here can be regarded as the alarm, which can
remind the operator ahead of time and perform fail-safe reac-
tions, such as shutting down the failed components and making
repair/replacement.

C. Degradation Pattern Recognition

Degradation patterns on even identical complements vary due
to different operational conditions, materials, manufacturing, or
processing techniques [4]. Most of them follow two types of
increasing trend of degradation patterns: for the first, in Fig. 3(a),
the root-mean-square (rms) of vibration signal shows a sudden
increasing trend; for the second, Fig. 3(b) shows a gradually
increasing trend.

Because the first degradation pattern can lead to totally failure
of industrial system in a short time, it should be considered first.
Therefore, once the tested component begins to degrade, which
can be determined by CNN classification model in the previous
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step, each degradation process is set to be the sudden degradation
pattern at the beginning. Based on the physical manifestation
of the sudden degradation pattern, if rms doubles after a few
samples (usually two or three samples), this process is regarded
as the first degradation pattern; otherwise, the alarm all-cleared,
and this degradation process is regarded as the second pattern.

D. CNN Regression Model Between Original Signals
and the Reliability Percentage

The RUL of some mechanical equipment can be quite differ-
ent from each other. Therefore, instead of calculating the RUL
directly, reliability is first calculated, and, then, the reliability is
converted to the RUL. At the beginning, the equipment is nor-
mal and the output of the regression CNN (the second CNN) is
one, and its reliability is taken equal to 100%. When the equip-
ment is complete failure, its reliability is zero. Then, a mapping
algorithm is proposed to map the reliability to the RUL. In this
way, the problem of time variance can be solved.

The objective of this step is to fit the degradation process
(usually the rms trend) with nonlinear functions. Exponential
function is one of the most commonly used methods because
typically the rms trend is a similar exponential form. How-
ever, exponential function cannot be fitted with all degradation
process due to the variability of mechanical systems and opera-
tion conditions. Therefore, a CNN regression model is used to
fit the nonlinear degradation process, which can calculate the
reliability based on training data. This is because deep learn-
ing methods allow computational models that are composed
of multiple processing layers to learn representations of data
with multiple levels of abstraction [26]. Therefore, CNN can fit
more complex nonlinear functions than exponential functions
theoretically. Two CNN models are trained in this step, one for
regressing rapid degradation and the other one for slow degra-
dation. Instead of using partial dataset to train the classification
models in the second step, two regression CNN models are
trained via all of the collected training data.

First, the collected vibration signals of the life test are im-
ported into the CNN classification model as the training data
to determine the IF point. Then, the labels corresponding to the
training data are set to be linearly decreasing

y2(i) = R(i) =

⎧
⎪⎨

⎪⎩

1, Ti ≤ T1

1 − Ti − T1

Te − T1
, Ti > T1

(2)

where y2(i) is the label of the input at time ti . R(i) is the
reliability percentage of the training data at time ti . Te is the
total time of the test; T1 is the start time of IF; and Ti is the run
time for now. The graphical demonstration is shown in Fig. 4.

After importing the vibration signals, as well as their cor-
responding labels, the reliability prediction models under the
two degradation patterns can be learned by training the CNN
regression models.

E. Predicting the RUL of New Test Components

In this step, the trained CNN models are used to predict the
RUL of a new test component. First, the vibration signals of the

Fig. 4. Graphical illustration of reliability labels generation.

test component are collected. Then, based on the constructed
framework, the collected signals are cut into a time series sam-
ple X = x(1) , x(2) , ..., x(m ) . At the beginning of the test, the
degradation pattern is set to be the rapid degradation pattern,
and the time series samples are imported into the CNN classifi-
cation model of rapid degradation to identify the IF point. Based
on the “3/5” principle, if three times the model outputs zero in
five sequential times, then the experimental subject is judged as
incipient failure. After a few samples (always two to five sam-
ples), if rms doubles, then the degradation pattern is confirmed
to be the first one, and the reliability prediction can be contin-
ued. If rms does not double, this degradation is confirmed as the
second pattern. Then, the historical time series samples are im-
ported into the CNN classification model corresponding to the
second degradation pattern to identify the IF point again. Just
like the training data, the IF point of test data is also identified
following Fig. 2. Once the IF point is confirmed, the collected
time series samples are imported into the corresponding CNN
regression model for reliability estimation.

To solve the RUL time variability and obtain more accurate
results, the labels of the CNN regression model is constructed
as the reliability, and the results of the whole framework are
the estimated reliability ˆR(i). Then, the reliability is mapped to
RUL by a mapping algorithm proposed in this paper.

As shown in Fig. 4, at moment ti , let Tf (i) be the time from
IF point to Ti . So, Tf (i) can be calculated as

Tf (i) = Ti − T1 . (3)

Then, the estimated RUL from IF point to the final failure
ˆTu (i) at ti can be estimated by Tf (i) and ˆR(i) as in Fig. 4

ˆTu (i) =
Tf (i)

1 − ˆR(i)
. (4)

To eliminate the influence of accidental errors, which is com-
monly seen in industrial systems, a weighted algorithm is pro-
posed. That is, instead of using current signals to estimate RUL
directly in traditional methods, the previous estimation results
are also weighted into the proposed method, which can be math-
ematically expressed as

ˆTwu (i) = α1
ˆTwu (i − 1) + α2

ˆTu (i) (5)

where ˆTwu (i) is the weighted total RUL from IF point to the final
failure at ti ; ˆTwu (i − 1) is the weighted RUL from IF point to the
final failure at ti−1 . α1 and α2 are the weight factors of previous
results and current results, and α1 + α2 = 1. If the system is
easily to be influenced by noise or other accidental errors, the
calculated results are more sensitive and more likely to occur
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Fig. 5. Proposed framework.

Fig. 6. The architecture of the signal-level CNN classifier, including an input layer I1, a convolutional layer C2 with 20 × 64 convolution kernel, a
pooling layer F4 with 32 pooling size, a flatten layer F4, a fully connected layer F5, and a softmax classifier.

deviation, α1 should set to be bigger. And if the test system is
robust, the current result should take a larger proportion because
it makes use of more timely information, and therefore α2 should
be bigger.

Based on ˆTwu (i) and Tf (i), the estimated RUL is

ˆRUL(i) = ˆTwu (i) − Tf (i). (6)

In this way, the proposed framework not only implements
the mapping from reliability percentage to RUL, but also solves
the RUL time variance problem, as well as the effect from
background noise to the results.

The proposed framework for mechanical equipment RUL pre-
diction is schematically represented in Fig. 5.

III. CASE STUDY

A. Dataset Description

The experimental data come from the publicly available
PRONOSTIA platform, which has been widely used to ver-
ify the effectiveness of RUL prediction methods [32]. During
the experiments, a radial force of 4 kN is applied on the test
bearings to conduct accelerated life tests. The rotating speed

of bearings is set as 1800 r/min. Two vibration sensors with
25.6 kHz sampling frequency are mounted on the bearing to
monitor the degradation process: one is set on the vertical axis,
and the other one is on the horizontal axis. In this paper, the
vertically collected signals are used for analysis. The length of
every sample is 0.1 s with 2560 points, and the sampling is re-
peated every 10 s. All tests are stopped when the amplitude of
the vibration signal exceeds 20 g. The experimental system, as
well as the tested bearings before and after a test, can be found
in [32].

B. Constructing CNN Classification Models for IF
Point Identification

At the beginning of the analysis, a five-layer deep CNN
model is first constructed as shown in Fig. 6, including a in-
put layer (I1), a convolutional layer (C2), a subsampling layer
(P3), a flatten layer (F4), a fully connected layer (F5), and a
softmax classifier. In this experiment, the convolutional ker-
nel in C2 layer is set to be 20 with 64 feature maps. Because
the vibration signals are imported into the CNN model directly
without any feature extraction, the convolutional kernel is a
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TABLE I
PARAMETERS OF THE OPTIMIZATION ALGORITHM

one-dimensional vector instead of a 2-D matrix in traditional
methods. Then, a pooling operation is applied in the following
P3 subsampling layer. This leads to the same number of C2
feature maps with a smaller resolution. After flatting the out-
puts of P3 in F4 layer, the outputs are used as the input of F5
to dense the feature maps and reduce the dimension. Suppose
the number of hidden units in F5 is a, then a a × 1 vector is
used as the input of softmax classifier and the final output is
the number of categories. In this paper, there are 1024 hidden
units in F5, so there are 1024 inputs imported into the softmax
classifier. Dropout is added in S3 layer and F5 layer in Fig. 6.
And dropout is set to be 0.25. The proposed method is imple-
mented based on GPU: NVIDIA GeForce GTX 1060. For the
first CNN model (classification CNN), the train time is 50.62 s,
the test time is 0.32 s, and the GPU memory cost is 3416 Mb.
For the second CNN model (CNN regression model), the train
time is 57.96 s, the test time is 0.31 s, and the GPU memory
cost is 3722 Mb. SVR is implemented based on CPU: Intel Core
i7-6700 Processor, so there is no GPU memory cost. The train
time is 3.69 s and the test time is 3.68 s. Python 3.5 platform is
applied to implement the proposed method, and ReLU function
is used as the activation function. Adam algorithm is used as the
optimizer [33]. The parameters of the optimization algorithm
are selected as in Table I. Two CNN classification models need
to be trained to identify the IF point. In this experiment, the col-
lected vibration signals are cut into segments with 2560 points
(10 s), and each segment is regarded as a sample.

Two tests have been selected randomly for analysis. The vi-
bration signals of the two tested bearings are shown in Fig. 7(a)
and (b). It can be seen that the vibration amplitude of first bear-
ing increases rapidly, while the second one increases slowly,
which match with the two degradation patterns. Their vibration
signals are cut into the normalized samples and used for learning
CNN models in this paper.

For the first degradation pattern in Fig. 7(a), the rms of each
sample is shown in Fig. 7(c). It can be seen that the vibration
signal lasts 8710 s. And there are 871 samples, including about
828 normal samples, and about 43 faulty samples. The first 500
samples are selected as the normal training samples. And due
to the rapid degradation trend, there are few faulty samples.
For this test, all of the faulty samples labeled 1 are used for
training. To control the input scale into a reasonable range, a
“Min-Max scaling” normalization technique is applied, which
can be mathematically represented as

x(i) =
xmax − x(i)
xmax − xmin

(7)

where x(i) is the vibration amplitude at moment ti . xmax and
xmin are, respectively, the maximum and minimum values of all
the samples.

In the proposed framework, the Rectified Linear Units
(ReLU) function is used as the activation function for all CNNs,
due to its fast convergence speed [34]

f(z) =

{
0, if z < 0

z, otherwise
. (8)

The loss function is set to be the categorical cross-entropy.
For the second pattern, the waveform of its vibration signal

and the rms are shown in Fig. 7(b) and (d). It can be seen that
the vibration signal lasts 27 550 s, and there are 2755 signal
segments. The bearing begins to degrade from 1415th sample
and the degradation is slow. In this test, the first and the last
500 signal segments are used as normal and faulty samples to
train the second CNN classification model, which is constructed
the same as above.

After the CNN model is trained, all of the signal samples
are imported into it to confirm the IF point. The classification
results are shown in Fig. 8 in red lines. For comparison, an-
other method is also used for IF point confirmation [35], whose
results are marked with the green lines in Fig. 7(c) and (d). It
can be seen that in Fig. 7(a), due to the rapid degradation, IF
point can be easily confirmed at 828th sample (8280s) by both
methods. However, the IF point can hardly be decided because
the degradation process is slow and the indication of the bearing
condition swings between normal and faulty in Fig. 7(b). This
problem is solved by the proposed method because based on the
“3/5” principle, the IF point is confirmed at 14 150 s. Compared
with 17 330 s by the comparison method, this result is more
reasonable.

C. Constructing CNN Regression Models

In this step, the CNN regression models are constructed for
reliability estimation. For each test, the reliability can be calcu-
lated by (2) based on the IF point. Then, all of the samples after
IF point are imported into the CNN regression model, as well
as their corresponding reliability as their labels.

In this step, the CNN models are constructed almost the same
as the CNN classification model. There are three differences
between them.

1) Another fully connected network F6 with 32 hidden units
is added between F5 and the last layer to avoid the dra-
matical shrink of the network and eliminate its influence
on the analysis results.

2) Instead of using softmax classifier in the last layer, lo-
gistic regression is applied, and the outputs of logistic
regression are used as the estimated reliability ˆR(i).

3) Because the problem in this step is a regression problem,
the mean squared error is used as the loss function in this
model, instead of the categorical cross-entropy.

D. IF Point Identification of Test Data

After the CNN classification models and regression models
have been trained, two random tests are selected to verify the
effectiveness of the proposed method. The vibration signals of
the two tests are shown in Fig. 9(a) and (b).
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Fig. 7. Vibration signals of (a) the first train dataset and (b) the second train dataset. Waveforms of rms of (c) the first train dataset and (d) the
second train dataset.

Fig. 8. IF point confirmation results of (a) the first test and (b) the second test.

Fig. 9. Vibration signals of the two tests and their rms for verification of the proposed method: (a) vibration signal of the first test; (b) vibration
signal of the second test; (c) rms of the first test; and (d) rms of the second test.

As described earlier in the proposed framework, the vibra-
tion signals are first cut into segments. Then, these segments
are directly imported into the first CNN classification model for
degradation pattern and IF point confirmation. The rms of the
two tests are shown in Fig. 9(c) and (d). The IF points confir-
mation results of the first CNN model are shown in Fig. 10. It
can be seen that the IF points of the two tests are determined as
24 190 and 13 350 s, respectively. The IF point of the second test
is decided based on the “3/5” principle. As shown in Fig. 9(c),
the rms of the first test doubles within two or three samples

after its corresponding IF point, while the second test does not.
Therefore, the first test is identified as a fast degradation pattern
and the second test is identified as a slow degradation. Then,
their signal segments are imported into the corresponding CNN
classification models.

In addition, it can also be seen in Fig. 9(c) that there are
some salient points during the experiment, which, however, do
not mean that the bearing is faulty because the bearing still
works for a long time after these points. If rms is considered as
feature, these can hardly be distinguished from faulty samples by
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Fig. 10. Classification results of (a) the first CNN model and (b) the second CNN model.

Fig. 11. RUL prediction results of the first verification test. (a) Estimated reliability percentage R̂ by the proposed method. (b) RUL prediction
results by the proposed method. (c) RUL prediction result by SVR.

Fig. 12. RUL prediction results of the second verification test. (a) Estimated reliability percentage R̂ by the proposed method. (b) RUL prediction
results by the proposed method. (c) RUL prediction result by SVR.

traditional methods. Based on the “3/5” principle, the proposed
method solves the problem effectively.

E. RUL Prediction of Test Data

After the IF point of each test is confirmed, all the collected
samples are imported into their corresponding CNN regression
models. Based on the mapping algorithm proposed in this pa-
per, the RUL can be estimated. To illustrate the superiority of
the proposed method, SVR method is used to analyze the same
signals for comparison. SVR is a regression method that can
estimate a relationship between input and output random vari-
ables. It has been widely used in many research works for RUL
prediction because it has shown to be very efficient in mod-
eling nonlinear relationships between a target variable and a
set of predictor variables [12], [36]. 11 time- and frequency-
domain features, such as rms, mean, kurtosis of the samples
after IF points of the training data, and the corresponding RUL
are used as the training set of the SVR. The estimated relia-
bility, RUL prediction results, and the comparison of the RUL
prediction results of the two tests are shown in Figs. 11 and 12.

TABLE II
PREDICTION ERRORS OF THE PROPOSED METHOD AND SVR

The horizontal axis of Figs. 11(b) and (c) and 12(b) and (c) is the
current time, and the vertical axis is the prediction of remaining
time that can be operated, which is called the RUL. For a more
intuitive comparison, root-mean-square error (RMSE) and cu-
mulative relative accuracy (CRA) [37] are used as the prediction
indexes, and shown in Table II. To illustrate the performance be-
tween raw data and the CNN model in training procedure, the
RMSE and CRA of the two training datasets are also shown in
Table II. It can be seen that the proposed method performs well
both in training and testing procedures.



YANG et al.: RUL PREDICTION BASED ON A DOUBLE-CNN ARCHITECTURE 9529

It can be seen from Figs. 11 and 12 that the prediction results
of the proposed framework show high accuracy. Compared with
more than three errors of SVR in the two tests, the errors of the
proposed method have been decreased a lot. At the beginning
of prediction process, which is the most difficult part, the RUL
prediction results of the proposed method have little difference
with the actual RUL, while the SVR results are nearly two times
of the actual RUL. For the first test, the SVR result in Fig. 11(c)
is always worse than the proposed method, but it gets better
rapidly, because the first test is a rapid degradation pattern.
However, for the fast degradation pattern, predicting the RUL
early and accurately is important.

In the second test of slow degradation, it can be seen that
the RUL prediction result of the proposed method still shows
high accuracy and robustness for a long prediction time dura-
tion. However, the prediction result of SVR differs greatly from
the actual RUL until the last 100 s, which is why in Table II
the RMSE of SVR is nearly 10 times than the proposed method,
and the CRA is also worse. This is because the proposed method
is driven by original signals directly, and provides accurate IF
points, which not only guarantee the operational information
can be fully used, but also make sure the RUL regression CNN
model is trained accurately. However, even though the IF points
are calculated accurately, and the training data sets are guaran-
teed to be effective, there is still a large gap between the results
of SVR and real RULs. This can be explained as follows. In
the proposed method, a weighted algorithm is used to retain
the information before the current time, which can avoid the
influence of outliers, whereas SVR, as well as most RUL pre-
diction methods, only uses the features of the current sample.
And, once an outlier appears, the result can be influenced a
lot, which can also be seen in Figs. 11(c) and 12(c) that the
oscillating amplitudes of SVR results in waveforms that are
much larger than those of the proposed method. In addition,
different bearings show different degradation time. And train-
ing data sets are usually different from the test data sets, which
can lead to an incorrect result if the prediction model stays the
same with the training model if we estimate the RUL directly
as traditional RUL prediction methods. However, in the pro-
posed method, a relative reliability is first calculated, instead of
mapping the absolute RUL value directly in traditional meth-
ods. By replacing the absolute value with a relative value, the
time variance problem can be solved and RUL can be predicted
more reasonably.

To illustrate the noise robustness of the proposed method, the
raw signals are added with white Gaussian noise and colored
noise. The white noise n(t) is constructed with a mean value of
0, and variance of 1. The colored noise is constructed as follows:

nc(t) = n(t) − 0.5n(t). (9)

Then, the proposed method is used to analyze the two signals
under two different noise conditions. The prediction errors of
them are shown in Table III. It can be seen that the addition
of different noise only has a minimal influence on the perfor-
mance of the proposed method, which verified the noisy and
disturbance rejection abilities of the proposed method.

TABLE III
PREDICTION ERRORS OF THE PROPOSED METHOD UNDER TWO DIFFERENT

NOISE CONDITIONS

IV. CONCLUSION

A double-CNN framework was proposed in this paper for
intelligent RUL prediction. There are four major contributions
in this paper to improve the prediction accuracy. First, the pro-
posed framework was driven by original signals directly, which
can not only solve the problem of feature extraction, but also
retain the operational information. Second, two most common
degradation patterns (sudden increasing trend and slow increas-
ing trend) were considered to build different IF distinguishing
models and a RUL prediction model for each pattern to been
trained. Third, a weighted algorithm, as well as a “3/5” principle
was proposed to ensure the stability of the prediction and elimi-
nate or reduce the influence of abnormal points. Finally, an inter-
mediate variable was introduced in this paper to solve the RUL
time and performance variance problem, instead of construct-
ing a RUL regression model directly in traditional methods. To
verify the proposed method, its performance is compared with
SVR, which is widely used for RUL prediction. The results
clearly demonstrate the effectiveness of the proposed method.
When dealing with other datasets, the corresponding parame-
ters should be adjusted to ensure the performance, such as kernel
size and pooling region. Future work will focus on simplifying
the classifier as three classifications, that is zero as normal; one
as sudden degradation, and two as slow degradation, which will
improve the proposed method to be more compact.
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