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Abstract—Motor fault diagnosis is imperative to enhance
the reliability and security of industrial systems. However,
since motors are often operated under nonstationary con-
ditions, the high complexity of vibration signals raises no-
table difficulties for fault diagnosis. Therefore, considering
the special physical characteristics of motor signals under
nonstationary conditions, in this article, we propose a mul-
tiscale kernel based residual convolutional neural network
(CNN) for motor fault diagnosis. Our contributions mainly
fall into two aspects. First, we notice that each motor fault
category has various patterns in vibration signals due to the
changing operational conditions of the motor. To capture
these patterns, a multiscale kernel algorithm is applied in
the CNN architecture. Second, since the motor vibration
signals are made up of many different components from
different transfer paths, they are very complex and variable.
To enable the architecture to extract fault features from deep
and hierarchical representation spaces, sufficient depth of
the network is needed, which will lead to the degradation
problem. In the proposed method, residual learning is em-
bedded into the multiscale kernel CNN to avoid performance
degradation and build a deeper network. To validate the
effectiveness of the proposed networks, a normal motor and
five motors with different failures are tested. The results
and comparisons with state-of-the-art methods highlight
the superiority of the proposed method.
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I. INTRODUCTION

MOTORS have been widely used in modern industrial
systems, such as wind turbines and vehicles. However, as

motors have become more and more complex and expensive, the
tolerance for performance degradation, productivity decrease,
and safety hazards are also becoming less and less [1]. On
the other hand, no matter how good quality the products are,
they will deteriorate over time [2]. Therefore, as an effective
means to estimate the reliability of motors and reduce the risk
of unplanned shutdowns, fault diagnosis is of vital importance
in modern industrial systems [3].

Because shallow learning models are unable to extract com-
plex features, traditional fault diagnosis methods usually com-
bine feature extractors with shallow learning models, such as
artificial neural networks or support vector machines (SVMs)
[4]. Feature extractors transform the raw signals into low-
dimensional vectors so that they can be easily matched, and
are relatively invariant with respect to transformations and
distortions [5]. Most commonly used feature extractors, Fourier
transform, wavelet transform (WT) [6], empirical mode decom-
position [7], spectral kurtosis [8], and sparse representations [9],
[10] are all widely used in industrial practice. The performance
of the shallow learning models depends heavily on the quality
of the extracted features from the collected signals [11].

The construction of feature extractor needs relevant prior
knowledge and is rather specific to the task. However, motors
have become increasingly complicated and diversified, which
make it time consuming to construct a feature extractor for each
type of motor. On the other hand, with the advancement of sensor
techniques, the collection of industrial data becomes more
convenient. Therefore, traditional fault diagnosis methods have
been re-examined from the point of big data [12], [13]. Recently,
deep learning technologies have led to a series of breakthroughs
in the field due to its attractive characteristic that directly learns
the high-level and hierarchical representations from massive
raw data [14], [15]. Convolutional neural networks (CNNs)
[16], deep belief networks (DBNs) [17], [18], residual CNN
(ResCNN) [19], and autoencoders (SAEs) [20] are popular deep
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learning methods used for various fault diagnosis applications.
In [21], a deep autoencoder is used for fault feature mining and
intelligent diagnosis of rotating machinery with massive data.
Gan et al. proposed a hierarchical diagnosis network by col-
lecting DBNs for the hierarchical identification of mechanical
fault pattern recognition of rolling element bearings [17]. An
enhanced deep feature fusion method for rotating machinery
fault diagnosis is proposed in [11]. Hu et al. developed an
intelligent fault diagnosis method for high-speed train based
on deep neural networks [22]. Oh et al. proposed a scalable
and unsupervised feature engineering method using vibration
imaging and deep learning for rotor system diagnosis [15].
Shao et al. designed a convolutional DBN model with Gaussian
visible units for bearing fault diagnosis [23]. Inspired by CNNs
and WT, Pan et al. proposed a deep neural network, called
LiftingNet, to learn features adapted from raw mechanical data
without prior knowledge [24]. Many other fault diagnosis tasks
have also been greatly benefited from deep models [25].

However, mechanical vibration signals are usually long
one-dimensional (1-D) complex signals. Due to the varying
operational conditions and noisy background, deeper and more
complicated features should be extracted for mechanical fault
diagnosis. In addition, the mechanical signals under nonsta-
tionary conditions can be much more complex. Thus, if deep
networks are used to diagnose mechanical malfunctions, deep
1-D architectures are needed to extract features from such
complicated signals. However, experiments find that when deep
networks start converging, a problem has been exposed: with
the network depth increasing, accuracy tends to saturate and
then degrade, which is not caused by overfitting [26], [27].
Therefore, the increase in deep network layers may lead to even
more serious degradation problems. On the other hand, due to
the fixed single-scale convolutional kernel and pooling size, the
input signals are analyzed with a fixed scale in traditional deep
networks, whereas industrial systems are always working under
variable conditions, which lead to time-varying signals. There-
fore, although deep learning is a powerful tool for data analysis,
it is less effective to extract features from time-varying signals.

To address the abovementioned problems, a multiscale
kernel-based ResCNN (MK-ResCNN) architecture is proposed
in this article for motor fault diagnosis. The main contributions
of this article are summarized as follows.

1) We propose a well-designed deep network, termed
MK-ResCNN, for motor fault diagnosis. In MK-
ResCNN, multiscaled convolutional kernels are used
to capture the characteristics of raw fault signals from
multiple scales, which promote the robustness and rep-
resent ability of the captured characteristics even un-
der nonstationary conditions. In addition, we apply the
identity mapping and residual mapping to make very
deep networks applicable for learning efficient fault
characteristics, meanwhile to overcome the performance
degradation problem that appears in traditional deep
networks.

2) Since the proposed method is based on a CNN, it inherits
the advantages of the CNN that can extract features and
recognize faults from raw time-series signals without the
help of signal processing techniques.

Fig. 1. Block of residual learning.

3) The proposed approach is evaluated through a motor
fault simulation experiment with a comprehensive per-
formance evaluation. The results are compared with
state-of-the-art results in the field of fault diagnosis under
nonstationary conditions to demonstrate the superiority
of our method.

The rest of this article is organized as follows. Section II de-
scribes the details of the proposed approach. Experimental setup
and data description are illustrated in Section III. In Section IV,
the proposed method and five classical and state-of-the-art
methods are applied to analyze the same experimental signals
to show the effectiveness of the proposed method. Finally,
Section V concludes this article.

II. PROPOSED APPROACH

A. Residual Learning

The analysis object for industrial system fault diagnosis is
usually a long 1-D complex vibration signal. In addition, the
changeable operational conditions of motors can even increase
the difficulty. If we want to use deep networks to diagnose
mechanical malfunctions, deeper 1-D architectures are needed,
because generally the deeper a network is, the more complex
features it can extract, and the better the performance is. How-
ever, previous experiments show that there exists a degradation
problem in deep networks: when the network depth increases,
accuracy saturates and then degrades, and the addition of more
layers can lead to an even higher training error, which is not
caused by overfitting [26], [27].

The degradation problem illustrates that a deep network is
not easy to train. Theoretically, if the additional layer does not
learn anything, but just copies the features of last layer (which is
called identity mapping), the training error should not increase.
Inspired by this intuition, residual learning [27] is embedded
in the proposed framework. For a deep network architecture,
and the input x, the learned feature is denoted as H(x). Now,
we expect the network to learn the residual F (x) = H(x) − x
because residual learning is easier than the traditional feature
learning. The residual learning adopts every few stacked layers,
as shown in Fig. 1. The output y is obtained by a shortcut
connection operation is given as follows:

y = F (x,Wi) + x (1)

where x and y are the input and output vectors of the layers
considered. Every building block has a multilayer architecture.
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F (x,Wi) is the residual function, which represents the residual
mapping to be learned. Take the building block in Fig. 1 as an
example: there are two layers, and F (x,Wi) can be represented
as

F = W2σ(W1x) (2)

where σ represents the activation function. In this article, σ is
set to be the rectified linear unit (ReLU) function. The biases
are omitted here to simplify the expression.

The dimensions of x and y must be equal. If the input and
output dimension are unequal, a linear projection Ws can be
performed by the shortcut connections to match the dimensions

y = F (x, {Wi}) + Wsx. (3)

If the residual value is not equal to 0, the network performance
can still improve by adding the number of layers in the network.
On the other hand if the residual value is 0, then the current
layer is just an identity mapping, which will neither improve nor
degrade. In this way, the degradation problem can be avoided,
and therefore a deeper network can be built.

B. Convolutional Neural Networks

A CNN is a variant of neural networks, which consists of
convolutional layers, an activation function layer, and pooling
layers.

Each convolutional layer consists of several convolutional
units. The loss function is optimized by a backpropagation
algorithm, such as the gradient descent algorithm [28], conjugate
gradient method [29], and AdaBoost algorithm [30]. The aim of
convolution operation is to extract different levels of hierarchical
features from raw data. The first convolutional layer may only
can extract some low-level features. The more convolutional lay-
ers are, the more complex features can be extracted. Compared
with other networks, the CNN exploits sparse connectivity by
making the kernel smaller than the input and enforcing a local
connectivity pattern among neurons of adjacent layers. Thus, the
complicated interactions between units can be described more
efficiently, and the overfitting risk can also be reduced. Each
kernel (or weight matrix) in the CNN is used across the entire
visual field, but learnt only once instead of learning a separate set
of weights for every location. Therefore, a CNN is an extremely
efficient way that applies the same linear transformation of a
local region across the entire input to describe transformations.

In the activation function layer, ReLU is widely used because
it can improve the training speed significantly [31]. It is defined
as follows:

f(x) = max(0, x). (4)

The pooling layer is another important part in a CNN. It
is subsampling in essence. Intuitively, this mechanism can be
effective because the precise location of a feature is far less
important than its relative position. Pooling will continuously
reduce the size of the data space, so the number of parameters
and calculation cost will also decrease, which also controls
overfitting [32]. The pooling operation also makes the feature
maps extracted by a CNN invariant to small translations of
the input. In general, the pooling layer is periodically inserted

Fig. 2. MK-ResCNN subblock.

between the convolutional layers of the CNN. Max pooling uses
the maximum value from each of a cluster of neurons at the prior
layer, which is the most common pooling technique.

C. Multiscale Kernel CNNs

Industrial system fault diagnosis is a time-series signal recog-
nition or regression problem. However, there are still some chal-
lenges to solve the problem: first, the single-scale convolutional
kernel size makes the network extract features from only one
scale. However, signals will not stay in the same scale due
to the change of components, systems, or sampling frequency
[33], which means that a fixed convolutional kernel size is not
suitable for every signal. Second, industrial systems are usually
not working under ideal conditions. Many factors may cause the
change of signals, such as variable wind speed for wind turbines,
changing loads, and mission profiles for engines. Consequently,
the ability to analyze signals over changing operation conditions
must be considered if we want a fault diagnosis method to be
widely applied in industrial systems.

To address these problems, a multiscale kernel CNN (MK-
ResCNN) is proposed in this article. First, we construct a basic
CNN block as follows:

y = W ⊗ x + b

s = BN(y)

h = ReLU(s) (5)

where ⊗ is the convolution operator. BN is the batch normal-
ization operation [34], which can improve generalization and
allow us to use much higher learning rates.

Then, the subblock of the MK-CNN is constructed by stack-
ing two basic CNN blocks, as shown in Fig. 2. As described
before, residual learning extends the network to a very deep
structure without degradation problem, so the residual learning
structure is explored between each CNN subblock to construct a
deep network for complex feature extraction. Let Basic denotes
the basic CNN block, which is corresponding to (5), and the
subblock is formalized as follows:

h1 = Basic(x)

h2 = Basic(h1)

y = h2 + x

ĥ = ReLU(y). (6)
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Fig. 3. Illustration of an MK-CNN block, which consists of three sub-
blocks. Identity mapping is applied after BN operation in each subblock
to avoid the degradation problem.

Then, a CNN block can be constructed by stacking several
subblocks, as shown in Fig. 3. Let subblock denotes the sub-
block, which is corresponding to (6), then the block can be
formalized as follows:

ĥ1 = subblock(x)

ĥ2 = subblock(ĥ1)

ĥ3 = subblock(ĥ2). (7)

Thus, the MK-CNN architecture is constructed by multiple
CNN blocks with different convolutional kernel sizes.

We noticed that multiscale CNN has been successfully ap-
plied for fault diagnosis of wind turbine gearboxes recently
[35]. However, the multiscale in this article means the flexible
convolutional kernels, and multiscale in [35] represents flexible
averaging strides. That is, in [35], the original input is converted
by three ways: s = 1, s = 2, and s = 3, where s is the length of
a nonoverlapping window. For example, s = 2 is computing
the average of every two items in the original signals with
a stride of 2. s = 3 is computing the average of every three
items in the original signals with a stride of 3. In this way,
the proposed method in [35] can generate multiscale lengths of
original signals by computing average as samples. The proposed
method in this article applies different scales of convolutional
kernels instead of downsampling or taking averages on original
signals. This is because downsampling and taking averages
cannot change the outline shape of original signals, which may
limit the performance of a CNN. Using different sizes of kernels
can learn features from original signals with different views with
multiple scales, making CNN learn features in multiscale views.

D. End-to-End Multiscale Residual Learning Architecture

The structure of the MK-ResCNN is graphically illustrated in
Fig. 4. In the experiment, time-series signal segments are used
as inputs of the MK-ResCNN directly. Since a CNN shows an
advantage in feature extraction, we construct an MK-ResCNN
architecture with three CNN blocks. In order to extract features
from different receptive fields, each block has different convolu-
tional kernels. The kernel sizes of different MK-ResCNN blocks
are set to be 1 × 3, 1 × 5, and 1 × 7. This is because the feature
map obtained by a layer with big convolutional kernel can also
be obtained by multiple layers with small convolutional kernels.
Big convolutional kernel may lead to an increase in complexity

and computation [36]. Therefore, small convolutional kernels
are used more often in practice. Then, unlike traditional CNN
models, the pooling operation is excluded in a CNN block here
in order to extract more detailed features. After the convolution
blocks, the features are fed into a global average pooling layer
to keep the robustness against translation of the framework and
reduce the number of weights and prevent overfitting [32]. We
decided to use an average pooling layer to keep the global feature
maps obtained from the convolutional layers (average pooling
uses the average value from each of a cluster of neurons at the
prior layer). The feature vectors after pooling layers in different
blocks are concatenated into a vector as the input of a fully
connected network, which is followed by a softmax layer for
fault recognition.

There are two reasons why just one fully connected network
is added here. First, the parameters in fully connected networks
are more than those in a CNN, which makes it hard to train
and can lead to the overfitting problem; and second, only one
fully connected layer means that features are mostly extracted
by a CNN, so the network architecture can be estimated directly
from results. That is, if the network is strong enough, only one
fully connected layer is needed for classification; if the network
is not strong enough, the addition of fully connected layer will
not improve the performance a lot. And the adding parameters
of the fully connected network will also cause overfitting.

Since mechanical signals are variable and noisy, deeper
networks are always needed to extract the deep-hierarchical
features, which makes the degradation problem an inevitable
problem. To the best of our knowledge, we are the first to provide
a multiscale kernel CNN embedded with residual learning
for fault diagnosis, which can guarantee that the performance
cannot be influenced by the depth of the network [32].

The flowchart of the MK-ResCNN based fault diagnosis
method is shown in Fig. 5. There are four steps in this
framework.
Step 1: Data acquisition. The motor vibration signals are

collected by a data acquisition system and sensors that
installed in the test motor.

Step 2: Data segmentation. Since we aim to build an end-
to-end diagnosed system to make the system more
intelligent, the collected vibration signals are cut into
samples and used as training samples directly.

Step 3: Training the MK-ResCNN model. After the vibration
signals are cut into samples, the samples are used for
MK-ResCNN model training. The Adam algorithm is
applied here to optimize the loss function.

Step 4: Fault diagnosis. The vibration signals of the test
motor are also cut into samples in the same way as
training samples, and used as the input of the trained
MK-ResCNN model for fault recognition. The output
of softmax regression can reflect the condition or the
failure type of the test motor.

III. EXPERIMENT AND DATA DESCRIPTION

In practice, the working conditions of motors are always
nonstationary. Because of the variable scales of features, fault
diagnosis under nonstationary conditions is much more difficult
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Fig. 4. Structure of the MK-ResCNN. The architecture consists of three CNN blocks with kernel sizes of 1 × 3, 1 × 5, and 1 × 7 respectively.
Residual learning is applied in each CNN subblock to avoid the degradation problem.

Fig. 5. Flowchart of the MK-ResCNN based fault diagnosis method.

Fig. 6. Experimental setup: (1) induction motor, (2) tachometer,
(3) bearing, (4) shaft, (5) load disc, (6) belt, (7) bevel gearbox,
(8) magnetic load, (9) reciprocating mechanism, and (10) variable-speed
controller.

than that of a constant speed. Studies about the nonstationary
operational conditions mostly focus on time–frequency feature
extraction of a signal segment, which can be time consuming
and poorly generalized. Such features also cannot be used for
fault recognition with machine learning methods directly. To
verify the effectiveness of the proposed framework in dealing
with nonlinear signals, an experiment on an electric machine
fault simulator under nonstationary conditions is conducted.

The experiment setup consists of motor, tachometer, bearing,
shaft, etc., as shown in Fig. 6. The power supply frequency
is 50 Hz. The accelerometer is used to collect the vertical
vibration signal. The location of sensor is shown in Fig. 7.
The sampling frequency is 12 800 Hz. The rotating speed is
controlled manually, which ranges from 0 to 3600 r/min. The
rotating speed variations of the test motors are similar with
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Fig. 7. Sensor location.

Fig. 8. Rotating speed.

TABLE I
DESCRIPTION OF THE SIX TESTED FAULTY MOTORS

each other, as shown in Fig. 8. The vertical vibration signals
are used for analysis in this experiment. There are a normal
motor and five motors with different faults are tested in this
experiment, including bowed rotor, broken bar, faulty bearing,
high impedance, and unbalanced rotor, as described in Table I.
Although the high impedance fault is an electrical failure, the
simulation of an insulated winding may lead to the change of
current signals that go through the stator winding, thus change
the electromagnetic vibration of motors, which can be collected
by accelerometer. The 2-s vibration signals of the six test motors
are shown in Fig. 9. It can be seen that the signals change
dramatically during these 2 s. The test motors are three-phase
asynchronous motors. The rated power is 735.5 W, and the rated
speed is 3600 r/min.

The collected time-series vibration signals are cut into seg-
ments as samples. The length of each sample is 512 points.
There are 10 788 samples in total. In total, 8630 samples are
randomly selected as training samples, whereas the remain-
ing 2158 samples are used as testing samples. The detail

Fig. 9. 2-s vibration samples of different motors. (1) Bowed rotor.
(2) Broken rotor bar. (3) Faulty bearing. (4) Normal motor. (5) High
impedance. (6) Unbalanced rotor.

TABLE II
NUMBERS OF TRAINING AND TEST SAMPLES

description of training samples and testing samples is shown
in Table II.

IV. RESULTS AND COMPARISONS

After data collection, the proposed MK-ResCNN method is
applied to analyze the vibration signals. Both the training and
test procedures are carried out offline. The loss function of
the framework is set to be cross entropy loss. To graphically
illustrate the learned essential features, t-distributed stochastic
neighbor embedding method [37] is employed to provide three-
dimensional (3-D) visual representations of the original signals
and the feature maps of last layers, as shown in Fig. 10.

The feature map dimensions of the first layer (inputs) and
the last layer (fully connect network) are all reduced to three
dimensions for feature visualization and easier comparison, as
shown in Fig. 10. Different color represents different failure
feature. It can be seen that different health states (or classes) are
heavily overlapped at the input layer, which demonstrates that
the feature information of raw signals are hardly differentiable.
And the different failure features extracted by the MK-ResCNN
can be easily distinguished or classified this time, thus shows
better diagnosed performance, which verifies the effectiveness

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 11,2020 at 13:43:40 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: MULTISCALE KERNEL BASED RESIDUAL CNN FOR MOTOR FAULT DIAGNOSIS UNDER NONSTATIONARY CONDITIONS 3803

Fig. 10. Feature embedding visualizations of high-dimensional feature
maps at different layers in the proposed MK-ResCNN. (a) Original data
and (b) output of fully connected layer. Feature maps in the last layer
of MK-ResCNN are semantically separable compared to original data,
suggesting that the extracted feature maps by the proposed framework
are better features for fault diagnosis. Each sample is visualized as a
point and samples belonging to the same class have the same color.

TABLE III
CONFUSION MATRIX OF THE PROPOSED MK-RESCNN

The bold numbers are the numbers of samples correctly
classified.

of the proposed method in learning a discriminative set of
features for nonlinear signal fault diagnosis.

The overall accuracy of the MK-ResCNN is 95.69%. To
give a more concrete illustration, the confusion matrix of the
MK-ResCNN results is shown in Table III. In Table III, the
number from 1 to 6 in the first column represents the test data
labels in nine different conditions. The number from 1 to 6 in
the first row represents the classification result of test data. In
addition, the precision ratio p, recall ratio r, and F1 score are
used as evaluation indexes for method performance, which are

TABLE IV
CONFUSION MATRIX OF FIVE COMPARISON METHODS

AND THE PROPOSED METHOD

defined as follows:

p =
TP

TP + FP

r =
TP

TP + FN

F1 =
2p × r

p + r
(8)

where TP represents the true positive samples, that is, the
positive samples that are correctly classified as positive, FP rep-
resents the false positive samples, that is, the negative samples
but are misclassified as positive samples, and FN represents
the false negative samples, that is, the positive samples but
are misclassified as negative samples. And the positive sample
means the sample that belongs to current failure type, whereas
the negative sample means the sample that does not belong to
current failure type. p, r, and F1 score of the MK-ResCNN
method results are shown in Table IV.

To verify the advantage of the proposed multiscale framework
in dealing with nonlinear signals, we compared our results to the
five different approaches: manual feature selection with SVM,
ResCNNs with kernel size 1 × 3, ResCNN 1 × 5, ResCNN
1 × 7, and MK-CNN. SVM is used to analyze the sample vibra-
tion signal segments, with five-layer wavelet packet energies as
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features. Three different ResCNNs with filter sizes 1 × 3, 1 × 5,
and 1 × 7 are tested respectively. Finally, a multiscale kernel
CNN without residual learning step (MK-CNN) is also used to
analyze the vibration signals for comparison. The architecture of
the MK-CNN stays the same with MK-ResCNN in Fig. 4 except
that there is no residual learning. All of the models are trained
and tested on the same datasets. The overall accuracies of the
comparison methods are 93.19%, 93.47%, 92.59%, and 94.07%.
The precision ratio p, recall ratio r, and F1 score of analysis
results by the four comparison methods, ResCNN with kernel
size of 1 × 3, ResCNN with kernel size of 1 × 5, ResCNN with
kernel size of 1 × 7, and MK-CNN without residual learning
step, are also shown in Table IV for comparison.

It can be seen from Tables III and IV that all p, r, and F1
score of the proposed method are over 90%, which means that
the probability of diagnosing two successive samples falsely is
0.01%. If a sample is diagnosed by mistake for once, we can
continuously diagnose the next sample, which will push the
result to 100%.

On the other hand, as shown in Table IV, it can be concluded
that class 1 is the most difficult class that can be easily diagnosed
incorrectly, and the results of class 6 perform the best. These
conclusions are the same as the MK-ResCNN results. SVM
with wavelet packet features performs worst. Because the
feature dimensions of the WT method need to be aligned,
each feature dimension should has its physical significance.
However, chronological feature extractors cannot make sure the
information and physical significance of each dimension in WT
remain the same. For example, the first dimensional information
of the first sample extracted by WT is the sum energy from 1 to
32 points. And the first dimensional information of the second
sample is the sum energy from 513 to 544 points. There is no
evidence that the energies of these two segments have the same
physical meaning, especially under nonstationary conditions.
While it is more likely to find the fault information in time-series
signals, the segment of time-series signals can be considered as
a small factor. When enough factors have been detected, the in-
dustrial system is diagnosed as faulty. The convolution operation
in a CNN is more likely to find the pattern. Therefore, a CNN
can implement the end-to-end time-series signals classification
tasks, whereas WT usually neglects the time-series information.
As a result, the diagnosed results of the rest comparison methods
all perform better than 80%, which are good results for nonlinear
signal analysis compared with SVM, but still nearly 10% worse
than the proposed diagnosis framework. The difference between
the ResCNNs and the proposed MK-ResCNN is the absence of
the multiscale architecture, which cannot only extract features
from different scales, but also make the framework more
suitable for fault diagnosis under nonstationary conditions.
The results demonstrate the effectiveness of this architecture.
The last part in Table IV is the analysis results of multiscale
CNN without residual learning to show the effectiveness of the
residual learning algorithm. It can be seen that the MK-CNN
performs better than other three methods, but still worse than the
proposed diagnose framework. This is because that the network
employed in this article is already a deep network (21 layers in
total), which may have led to the degradation problem in deep
architectures.

Fig. 11. (a) Training accuracy trends and (b) its local enlargement of
the proposed MK-ResCNN method, ResCNN with kernel size of 1 × 5
and MK-CNN. The blue line represents the training accuracy trend of
MK-ResCNN, the red line represents that of ResCNN, and the green
line represents that of MK-CNN.

To further illustrate the superiority of the proposed method,
the training accuracy trend of the proposed MK-ResCNN
method and the alternative methods with the increase in itera-
tions are shown in Fig. 11. During the experiment, we saved
the model of every epoch during the training process. The
model with the highest test accuracy is applied finally. Since the
ResCNN performs best when kernel size is 1 × 5, the accuracy
trends of the rest two ResCNNs are not drawn here. As shown in
Fig. 11, at the beginning, the performance of the three methods
is nearly the same, and the increased speeds are also similar.
After 150 iterations, the proposed MK-ResCNN performs better
than the other two methods. The gap between them becomes
larger and larger with the increase in iterations. In the end,
the training accuracy of the MK-ResCNN method outperforms
the other two methods by nearly 2%, which illustrate that
both the multiscale algorithm and the residual learning algorithm
improve the performance of the diagnosed method.

V. CONCLUSION

In this article, a novel MK-ResCNN was proposed for motor
fault diagnosis under nonstationary conditions. First, residual
learning was introduced in the CNN architecture to avoid
the degradation problem in deep neural networks. Second, a
multiscale architecture was proposed for feature extraction from
different scales. Then, a motor failure simulation experiment
with time-varying rotating speed was conducted by testing
five motors with different faults and one normal motor. The
proposed MK-ResCNN was applied to analyze the vibration
signals that are collected in the experiment. SVM, different
residual learning CNNs without multiscale architecture, and a
multiscale CNN without residual learning step were also applied
to the same signals for comparison. The results illustrated the
effectiveness and outstanding performance. Our work showed
that the proposed method not only is an end-to-end fault diagno-
sis approach that can extract features from raw signals directly,
but also is capable for classification tasks of noisy data under
nonstationary operation conditions. The multiscale architecture
allows the signals to be analyzed from different scales. At the
same time, the identity mapping operation covered by residual
learning helps the proposed method to extract much deeper
features regardless of the degradation problem. The proposed
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framework could also be applied to classification of other signals
or for fault diagnosis of other components, such as bearing and
gearbox, which enlarges its possible applications.
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