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Diagnosis Under Nonstationary Conditions
Fei Wang, Ruonan Liu , Member, IEEE, Qinghua Hu , Senior Member, IEEE,

and Xuefeng Chen, Member, IEEE

Abstract—Recently, convolutional neural networks
(CNNs) have been successfully used for motor fault
diagnosis because of its powerful feature extraction
ability. However, there are still some barriers of traditional
CNNs. Due to the fact of the hierarchical structure, feature
resolution of CNNs will be reduced with layer growth,
which can lead to the information loss. In addition, the
fixed kernel size makes traditional CNNs not suitable
for fault diagnosis of motors, which are widely used in
nonstationary conditions. Therefore, starting from the
physical characteristics of nonstationary vibration signals,
a cascade CNN (C-CNN) with progressive optimization
is proposed in this article. First, a cascade structure is
built to avoid the information loss caused by consecutive
convolution striding or pooling. Then, dilated convolution
operations are implemented, which can extract the feature
maps from different scales and extend the applications
of CNN to nonstationary conditions. Furthermore, taking
the advantage of the cascade structure, a progressive
optimization algorithm is proposed for divide-and-conquer
parameters optimization, which enables the C-CNN to
converge to a more optimum state and improve the
diagnosis performance. The proposed method is verified
by two motor fault diagnosis experiments, which are
conducted under constant speed and variable speed,
respectively. The results show that the proposed method
can achieve better performance when rotating speed is
either constant or changing than exiting methods.

Index Terms—Convolutional neural network (CNN), deep
learning, motor fault diagnosis, nonstationary conditions,
progressive optimization.
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I. INTRODUCTION

A S ONE of the most important parts in modern industrial
systems, electric motors have begun to be more intensively

utilized in industrial applications due to their ruggedness, low
price, and less maintenance cost [1]–[3]. Therefore, to ensure
the reliable operation of industrial systems and decrease the
economic loss, condition monitoring and fault diagnosis of
motors play an increasing significant role in normal operation
and maintenance of motors [4].

In the literature, lots of methods have been proposed for
motor fault diagnosis under constant rotating speed. Usually
traditional fault diagnosis methods are built based on two steps:
feature extraction and fault recognition. Feature extraction is
an important step in motor fault diagnosis because raw sig-
nals can be represented by low-dimensional vectors for easier
comparison and analysis in this step. Many signal processing
techniques have been proposed for feature extraction, including
statistical analysis, short-term Fourier transform, wavelet packet
transform [5], empirical model decomposition [6], and sparse
representation methods [7]. In the second step, the fault can
be diagnosed by the following pattern recognition methods [8],
such as support vector machine [9] and artificial neural network
(ANN) [10]. Effective as traditional diagnosis methods are, they
still suffer from several weaknesses, including the requirement
of enough prior knowledge for feature extractor design and the
limitation when facing with so many changeable operational
conditions. Such problems promote the applications of deep
learning methods in the field.

Deep learning methods aim at learning feature hierarchies
from higher levels of the hierarchy formed by the composition
of lower level features, which show the potential to solve the
problems of traditional diagnosis methods [11]. For now, autoen-
coders [12], [13], convolutional neural networks (CNNs) [14],
[15], recurrent neural networks [16], [17], and deep belief net-
work [18], [19] are the most commonly used networks that can be
implemented by deep structure. Since Jia et al. [20] applied deep
neural network to intelligent diagnosis of rotating machinery in
2016, lots of deep learning based motor fault diagnosis methods
have been proposed because they provide an effective way to
extract features from raw signals automatically. CNNs have re-
cently become one of the most commonly used deep architecture
for tasks, such as object recognition in large image achieves, as
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well as fault diagnosis, and have achieved the state-of-the-art
performances with a significant gap. 1-D CNN has been used
for real-time motor fault detection by Ince et al. [21]. Based on
LeNet-5, Wen et al. [22] proposed a new CNN framework, which
has been proved to be effective for motor bearing fault diagnosis.
Liu et al. [23] proposed a multiscale kernel algorithm that can
be applied in the CNN architecture to capture the patterns of
vibration signals in the changing operational conditions.

However, although it is convenient to diagnose motor failures
by such end-to-end deep learning methods, there are still some
limitations of CNN when dealing with industrial signals. First,
as we all know, CNN is a hierarchical structure. Therefore, with
the layer becomes higher, feature resolution will be reduced due
to the consecutive convolution striding or pooling operations,
which may further lead to little influence on image recognition
tasks because the decrease of resolution in a certain range will
not change the extracted features of an image a lot. However, in-
dustrial signals are different from images, the vibration response
signals of faults may vanish quickly. As a result, the decrease
of feature resolution here can make a difference on the final
diagnostic performance if such vibration response signals are
lost during the convolutional or pooling operations. Second, in
a CNN, once the convolutional kernel size is defined, it will be
used across the whole perspective field, which can reduce the risk
of overfitting. Therefore, the kernel size should also be defined
carefully to ensure the diagnostic performance. Additionally, the
induction motors are usually working under variable conditions.
The fixed kernel size makes the CNN extract feature maps in
only one scale, which limits the application of CNN from fault
diagnosis tasks under nonstationary conditions. Third, gradient
descent algorithm and its variants are widely used for deep
network optimization, which adjust all the parameters together
from a global view. However, since the number of parameters in
networks is large, such an optimization manner can lead to an
unsatisfactory locally optimization solution.

Therefore, from the view of these two problems, a cascade
CNN (C-CNN) with progressive optimization is proposed in
this article. On the one hand, the proposed C-CNN implements
a cascade structure instead of a traditional single hierarchi-
cal structure to capture the semantic information at all levels.
Specifically, the C-CNN is constructed based on a traditional
bottom-up pyramidal CNN pathway first, then followed by a
top-down pathway with lateral connections. In this way, the
specific features of high resolution and the general features of
low resolution can be combined without the sacrifice of speed.
On the other hand, the convolutional kernels with various strides
are also applied, which can be regarded as a dilated convolution
structure applied in each convolutional layer. Thus, it controls
the perspective field in which the network analyzes. Therefore,
multiscale information can be extracted from different sizes
of perspective fields by such a dilated convolutional structure
with various rates. Finally, taking the advantage of the cascade
structure, a progressive algorithm is proposed for C-CNN opti-
mization, which decomposes the parameters into several levels
and adjusts the parameters from bottom to top in a progressive
manner. Thus, the C-CNN could converge to a better state,

increasing the performance of the motor fault diagnose. Since
the C-CNN is proposed to improve the natural property of CNN,
it will retain the aforementioned advantages even when the
backbone CNN is constructed with few layers.

The rest of this article is organized as follows. Section II
describes the details of the proposed method. In Section III,
a motor experiment under constant rotating speed is conducted.
In Section IV, another motor experiment under nonstationary
operational conditions are conducted in the same testbed to illus-
trate the effectiveness of the proposed method for nonstationary
signal analysis. Finally, Section V concludes this article.

II. PROPOSED METHOD

Since the C-CNN is constructed based on a CNN structure, a
brief introduction of CNN theory background is demonstrated
first. Then, the cascade structure and dilated convolution struc-
ture are illustrated, respectively. Next, the overall framework
of the proposed C-CNN is described. Finally, the progressive
optimization algorithm is proposed to adjust the parameters of
the C-CNN.

A. Convolutional Neural Network

CNN is a kind of variant neural network, which has been
successfully applied in many fields because of its excellent
ability of feature extraction. Essentially, a CNN is constructed by
convolutional layer, pooling layer, and fully connected network.
The function of a convolutional layer is to extract the feature
maps from inputs by sliding the filter kernels and calculating the
convolution of input local regions and the kernels [24], which
can be mathematically described as

yl(i,y) = Kl
i · xl(rj) =

W∑
j′=0

Kl
i(j
′)xl(j+j′) (1)

where Kl
i represents the weights of the ith filter kernel in layer

l. xl(rj) represents the jth local region in layer l. · denotes the
dot product. W is the width of the kernel. Kl

i(j
′) denotes the

j ′th weight of the kernel.
Pooling is also an important part of CNN. It is a form of

subsampling that can reduce the feature dimensions, as well as
enable the representation that become invariant to small trans-
lation of the inputs. Max pooling is one of the most commonly
used subsampling operation, which can be described as

pl(i,j) = max
(j−1)W+1≤t≤jW

{
al(i,t)

}
(2)

where pl(i,j) represents the value of the neuron in layer l of the
pooling operation. al(i,t) denotes the value of tth neuron in the
ith frame of layer l, and t ∈ [(j − 1)W + 1, jW ]. W represents
the width of the pooling region.

After several alternate convolutional and pooling layers, the
fully connected layers are followed to compute the class scores.
Usually, the structure of fully connected layers is kept the same
with traditional ANN.
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Fig. 1. Traditional CNN baseline.

B. Cascade Structure

Since CNN can extract feature from input automatically and
directly without much requirement of prior knowledge, it has
been widely used in fault diagnosis applications for now. How-
ever, effective as CNN is, it still suffers from several problems
due to its essential structure. First, as a hierarchical structure,
CNN is constructed by the stack of different layers. With the
addition of layers, feature resolution will be reduced due to the
consecutive convolution striding or pooling operation, which
has been introduced in the Section II-A. The decrease of feature
resolution in a certain range in image tasks may have little
influence on the final results. Just like we human beings can
recognize an object at different reasonable distance. However,
industrial vibration signals are different from images. In fault
diagnosis tasks, the main mission is to extract the fault response,
which can vanish quickly. Therefore, the decrease of feature
resolution may lead to some useful information loss and make
a difference on the final diagnostic performance.

To overcome the aforementioned problem, the CNN’s pyra-
midal hierarchical structure is utilized naturally to build a cas-
cade structure in a backbone CNN, which can keep both the
low-resolution and high-resolution feature maps without the
growth of algorithm operational time and memory. There are
three points in the cascade structure: traditional CNN baseline,
top-down structure, and lateral connections.

1) CNN Backbone: The cascade structure starts from a tradi-
tional CNN backbone. A simple example is shown in Fig. 1. For
each unit, to improve the generalization of the CNN model and
allow us to use much higher learning rates, batch normalization
(BN) is applied between each convolutional layer and activation
layer. Given a minibatch {x1, x2, . . ., xm} with the parameters
of γ and β, the transformation of BN layer can be described as

μ =
1
m

m∑
i=1

xi (3)

σ2 =
1
m

m∑
i=1

(xi − μ) (4)

x̂i =
xi − μ√
σ2 + ε

(5)

BNγ,β(xi) = γx̂i + β. (6)

Fig. 2. Top-down structure.

Then, followed by the activation layer. In this article, recti-
fied linear unit (ReLU) activation function is applied, which is
defined as

a = max
{

0,BNγ,β(xi)

}
(7)

where BNγ,β(xi) is the output of BN layer.
2) Top-Down Structure and Lateral Connections: In the last

stage, it can be inferred that the feature resolution will be reduced
with the increase of layers due to the convolutional striding
or pooling operations. Yosinski et al. [25] have explored the
generalization and specification of the extracted features by each
layers. The experimental results show that the features of the
first three layers are mostly general features. After that, the
features become more and more specific. As a result, usually
the features that used for final classification tasks are rather
specific. However, for a motor system, the global features of
the previous layers can also be useful if some fault information
has been lost during the transmission of network. Therefore,
a following top-down pathway is added in the backbone CNN
structure to solve this problem [26]. Traditional multiresolution
feature extraction will increase the computation considerably.
Here, the top-down pathway structure is constructed naturally
based on the CNN pyramidal hierarchical structure, which can
keep both the low-resolution and high-resolution feature maps
without the increase of computation. The graphical illustration
is shown in Fig. 2 and the general procedures are summarized
as follows.

1) The feature maps of the highest layer are used as the input
of a fully connected network for prediction.

2) Second, the feature maps of the highest layer and the sec-
ond highest layer are combined and used for prediction.

3) Then, repeat the last step until the lowest layer. If there
are n layers in the network, there will be n− 1 prediction
results.

Since there will be size difference between the feature maps
of different layers, the higher resolution feature maps are up-
sampled first to match with the lower resolution feature size.
Then, the feature maps from different layers are merged by
lateral connections, as illustrated in Fig. 3. There are many
lateral connection methods that can be used. In this article, the
elementwise addition is applied.

C. Dilated Convolution Structure

In a CNN, once the convolutional kernel size is defined, the
corresponding kernel will be used across the whole perspective
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Fig. 3. Lateral connection.

Fig. 4. Dilated convolution structure. (a) Rate = 1. (b) Rate = 2.
(c) Rate = 4.

field of input. In this way, the risk of overfitting can be reduced.
However, the flexibility of the convolutional kernel is also de-
creased, and therefore, the kernel size should be determined
carefully and suitably, which may lead to a waste of human
resources and time. Fixed kernel also limits the applications of
CNN for multiscale data analysis, such as the vibration signals
under variable rotating speed.

Therefore, to solve the aforementioned problem, a dilated
convolution structure is applied based on atrous CNN [27]. A
simple example with three rates is shown in Fig. 4. Consider a
given input x of current layer, for each location i on the output
y and a convolutional kernel (or it is also called as weights) w,
dilated convolution is constructed over the input

y(i) =
∑
k

x(i+ r · k)w(k) (8)

where the rate r represents the stride we scale the kernel. As an
example, the convolutional kernel of standard CNN is a special
case for rate r = 1. It is found that the kernels with even number
sizes can lead to the size difference between input and output
feature maps [28]. Therefore, to ensure the kernel size to be odd
number, the rate r should be even number here. Usually, r is set
to be a power of two to make fully use of this dilated convolution
structure.

Then, the scale operation and dilated convolution are imple-
mented in C-CNN. In this stage, feature maps under different
scale can be obtained by convolving the input with multiscale
kernels. Since it may lead to computation waste if kernels with
different sizes are applied directly here, the kernels are upsam-
pled by inserting r − 1 zero elements between two kernel values
at each dimension, instead of zooming the kernel directly. Thus,
the perspective field of each scale kernel will not overlap with
each other, which can avoid the computation waste effectively.
On the other hand, since the kernel is scaled by inserting zero
elements into original kernel, the risk of overfitting will not be
increased.

D. C-CNN Diagnosis Framework

As shown in Fig. 5, the framework of the C-CNN is con-
structed based on a CNN architecture, and composed with
dilated convolution layer and cascade structure.

First, because the framework is built based on a backbone
CNN, it also inherits the advantages of traditional CNNs, in-
cluding the powerful ability of feature extraction, invariant to
small translations, and low risk of overfitting. Therefore, the
proposed method can be used to build an intelligent end-to-end
fault diagnosis framework, and the vibration signals can be
analyzed directly without other feature extractor.

Then, it can be seen that the dilated convolution is applied at
first convolutional layer to extract feature maps from different
scales, which can make the diagnose framework more suitable
for nonstationary vibration signal analysis.

The cascade operation is applied on the higher part of the
framework via four units. The detailed structure of every unit
is shown in the right-hand side of Fig. 5. The cascade structure
in Fig. 5 is mainly referred to Resnet 18 [29]. There are four
convolutional layers in each unit. The number of channels
doubles with the unit increase, which are 64, 128, 256, and
512 in each unit, respectively. The length of each layer also
halves with the unit increase, which are 64, 32, 16, and 8 in each
unit, respectively. Since the cascade structure is built based on
the natural CNN pyramid structure, there is no additional compu-
tation or memory requirement. The low-resolution feature maps
and high-resolution feature maps can be merged together via the
lateral connection and used in cascade for prediction, which can
avoid information loss caused by the deep architecture.

Specially, the flowchart of the C-CNN fault diagnosis method
is presented in Fig. 6. In the first step, the vibration signals
are collected by acceleration sensors and cut as the samples of
C-CNN. The samples are divided into training set and testing
set randomly. Then, the training set are used for training C-
CNN model until the terminal conditions are satisfied. Thus, the
unknown test signals can be diagnosed to be normal or not by
the C-CNN model.

E. Progressive Optimization Algorithm

In this article, cross-entropy loss is applied for predictions.
For the target distribution p(x) and the estimated distribution
q(x), the cross-entropy is defined as

Lossi = H(p(x), q(x)) = −
∑
x

p(x) log q(x) (9)

where Lossi denotes the cross-entropy loss of unit i. Tradi-
tional gradient decrease algorithms generally use the overall loss
Loss =

∑
i(Lossi) as the loss function. However, there is a large

amount of parameters in a CNN. The optimization of all these
parameters can make the network easier to get into the local
optimum.

Therefore, taking the advantage of the cascade structure, a
progressive optimization algorithm is proposed in this article.
In the learning procedure, the parameters in cascade structure
are divided into four parts first. Then, the algorithm optimizes
the parameters progressively. That is, given a training epoch K,
the C-CNN are optimized for K epochs. In each epoch, we first
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Fig. 5. C-CNN framework, which is composed with a dilated convolution layer and a cascade structure based on a CNN backbone, and the detail
structure of cascade unit 1. The convolutional kernel sizes of unit 2, unit 3, and unit 4 are 32× 128, 16× 256, and 8× 512, respectively.

Fig. 6. C-CNN fault diagnosis method.

optimize the C-CNN with the high-level loss, i.e., Loss4 shown
in Fig. 5. Then, the Loss4 + Loss3 and Loss4 + Loss3 + Loss2

are utilized to optimize the network, successively. Finally, all
high-level and low-level losses, as shown in Fig. 5, are summed
up to update the networks. The pseudocode of the progressive
optimization algorithm is shown in Algorithm 1.

Compared with the traditional method that directly applies
the sum of all losses to optimize the network, the proposed
progressive optimization algorithm could learn better high-level
features, then advance the low-level features via better high-level
features. With this promotion, the C-CNN could converge to a
better state, thereby increasing the performance of the motor
fault diagnose. Theoretically, the progressive optimization can
be treated as divide-and-conquer strategy, which makes opti-
mization process easier via several divided steps.

Algorithm 1: Progressive Optimization Algorithm.
Input:
Training set D = {(x(i), y(i))}, i = 1, . . .,m;
Output:
A CNN with optimized parameters.
Initialization:

Initialize parameters θ in the range of (0,1);
Initialize CNN cascade amount C;
Initialize training epoch K;
Initialize current epoch k = 0.

while k < K do
Randomly shuffle D → D;

Progressive Optimization:
Sequentially sample batch from D → (X,Y );
Initialize current cascade c← C;
while c < 0 do

Computer Cross Entropy Loss by (9);
Loss =

∑C
i=c Lossi

Optimize Loss with Adam optimization to get new
CNN θ∗ → θ

c← c− 1;
end while
k ← k + 1

end while

III. MOTOR FAULT DIAGNOSIS UNDER

CONSTANT ROTATING SPEED

The first experiment is conducted under constant rotating
speed to simulate the stationary operation condition. The ex-
periment setup is shown in Fig. 7, which is constructed by
motor, tachometer, bearing, shaft, load disk, belt, bevel gearbox,
magnetic load, variable speed controller, etc. In this experiment,
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Fig. 7. Experimental setup.

Fig. 8. Locations of two accelerometer sensors.

the rotating speed is set to be a constant. In the first experi-
ment, nine motors with different health or failure conditions are
tested, including broken rotor bar, bowed rotor, faulted bearing,
unbalanced rotor, normal motor, angular misalignment, parallel
misalignment, low impedance, and high impedance, which are
labeled as 1 to 9, respectively.

In addition, because vibration signals consist of plentiful
information with the dynamical features, and the accelerometer
is an inexpensive and immediate measurement, vibration signal
analysis has been proven to be an effective way for motor fault
diagnosis [30], [31]. Therefore, vibration signals are collected
and analyzed by the proposed C-CNN method in this article. Two
accelerometers are used for vibration data acquisition, as shown
in Fig. 8. The sampling frequency is set to be 6400 Hz. Since
we aim to build an end-to-end diagnosis method, the vibration
signals are cut into samples directly after data acquisition, and
the length of each segment is 512 points. 28 333 samples are
selected randomly for training, and the rest 7084 samples are
kept for testing.

Then, the proposed C-CNN (progressive C-CNN) method is
applied to diagnose the nine different motor conditions. The
confusion matrix of the analysis results is shown in Fig. 9(a). To
illustrate the advantages of the proposed cascade structure and
the dilated convolution operation, the same training samples are
also used to train four different CNN models for comparison,
which are: C-CNN without progressive optimization algorithm
(C-CNN), C-CNN without dilated convolution (C-CNN), tradi-
tional CNN with dilated convolution (D-CNN), and traditional
CNN without dilated convolution (CNN). The confusion matri-
ces of the analysis results of the four comparison methods are

also shown in Fig. 9(b)–(e). The percentages are shown here
instead of the sample numbers, which can be more reasonable
because the sample number of each motor condition is different
from each other. For a better data analysis, t-distributed stochas-
tic neighbor embedding (t-SNE) technique [32] is applied for
feature visualization, as shown in Fig. 10. In this experiment,
the accuracy, recall, precision, and F1 score are used as the
performance estimation indexes of the analysis results. The
estimation indexes of different methods are shown in Table I.

It can be seen from Fig. 9 that the proposed method performs
best at diagnosing different motor faults, with overall accuracy
of 99.62%. Then, followed by the C-CNN without progressive
optimization, C-CNN, D-CNN, and traditional CNN. It can
be concluded that the progressive optimization algorithm, the
cascade structure, and the dilated convolution operation can im-
prove the diagnostic accuracy of CNN model. Cascade algorithm
can be more useful than dilated convolution and progressive
optimization in this experiment. It can also be found that classes
5 and 6 are the most confusing faults, which can also be verified
in Table I. But the proposed method still can distinguish them
better than the comparison methods, which is due to the fact
that cascade structure can learn high-level features and low-level
features from different scales, which can improve the diagnostic
accuracy effectively. Except these two classes, the diagnostic
accuracy of the proposed method are all higher than 99.90%.
In Fig. 9(b) and (c), C-CNN without progressive optimization
performs best in the four comparison methods. C-CNN performs
more stable than other two comparison methods. Except classes
5 and 6, classes 4 and 6 are also confused by D-CNN in Fig. 9(d),
which illustrates that with the growth of layer in CNN archi-
tecture, the information that can distinguish unbalanced rotor
and angular misalignment is lost by the consecutive convolution
striding or pooling operation. It can be seen from Fig. 9(e) and
Table I that classes 1, 4–7, and 9 are confused by the traditional
CNN, which indicate that the dilated convolution can extract
the feature information of classes 1, 7, and 9 effectively. It
can be seen from Fig. 10 that the interclass distance of the
proposed C-CNN method is largest, as shown in Fig. 10(a). As a
result, the diagnosis accuracy of the proposed method is highest.
The interclass distances of C-CNNs in Fig. 10(b) and (c) are
smaller than the proposed method, but larger than traditional
CNNs. In Fig. 10(d) and (e), it can be seen that the interclass
distances of traditional CNNs are smaller than C-CNNs, and the
intraclass distances are larger, which increase the difficulty of
fault diagnosis.

To further demonstrate the convergence process of the pro-
posed method, the train accuracy and test accuracy of each
epoch are shown in Fig. 11(a) and (b), respectively. It can be
found that the training accuracy converges quickly, and get to
100% from epoch 14. After epoch 14, training accuracy stays
in 100% except one epoch, which shows the stability of the
proposed method. Similarly, test accuracy converges to 99.65%
at epoch 19. Therefore, the proposed method can effectively
diagnose different motor faults. The comparison results with
state-of-the-art methods also illustrate the advantages of the
cascade algorithm and dilated convolution.
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Fig. 9. Confusion matrix of (a) the proposed method, (b) the C-CNN without progressive optimization algorithm, (c) the C-CNN without dilated
convolution, (d) traditional CNN with dilated convolution, and (e) traditional CNN without dilated convolution. (Best viewed in zoom up.)

Fig. 10. Feature visualization via t-SNE of (a) the proposed method, (b) the C-CNN without progressive optimization algorithm, (c) the C-CNN
without dilated convolution, (d) traditional CNN with dilated convolution, and (e) traditional CNN without dilated convolution.

TABLE I
THE ESTIMATION INDEXES OF THE PROPOSED METHOD AND FOUR COMPARISON METHODS

IV. MOTOR FAULT DIAGNOSIS UNDER

VARIABLE ROTATING SPEED

Due to the wide applications of motors, the operational con-
ditions cannot always be guaranteed to be constant speed. Many
factors can lead to the variate of operational conditions, such
as the fluctuation of wind speed to wind turbine motors, the
change of speed to vehicle motors, etc. On the other hand, as
the applications of motors grow more and more popular, the
operational conditions are also changing dramatically, which

lead to the use of motors extends to variable rotating speed
conditions. Therefore, to further verify the effectiveness of the
proposed method in modern industrial systems, the second ex-
periment is conducted under variable speed. The rotating speed
is controlled by the speed controller manually, which ranges
from 0 to 3600 r/min. Six motors with different faults are tested
in this experiment, namely, broken rotor bar, bowed rotor, faulted
bearing, unbalanced rotor, normal motor, and high impedance.
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Fig. 11. (a) Training accuracy and (b) testing accuracy of every epoch.

TABLE II
THE ESTIMATION INDEXES OF THE PROPOSED METHOD

AND FOUR COMPARISON METHODS

The vibration signals are cut into samples directly as the first
experiment, and the length of each segment is still 512 points.
8630 samples are selected randomly for training and the rest
2158 samples are used for testing.

Then, the proposed method is used to diagnose different
conditions of the six motors under variable rotating speed. The
confusion matrix of the proposed method is shown in Fig. 12(a).
C-CNN without progressive optimization algorithm, C-CNN,
D-CNN, and traditional CNN are also used for comparison, as
shown in Fig. 12(b)–(e). t-SNE is applied for feature visualiza-
tion, as shown in Fig. 13. The accuracy, recall, precision, and F1
score are also calculated to estimate the performance of different
methods, as shown in Table II. It can be concluded from Table II
and Fig. 12 that the proposed method performs better than the
comparison methods, with overall accuracy of 94.49%. The
accuracy of the proposed method has also been increased much
larger from the traditional CNN (8.02%) than the first experi-
ment (4.72%). This is because although traditional CNN shows
advantages in extracting feature automatically, it is not suitable
to analyze multiscale signals due to the fixed kernel size. While
the proposed C-CNN method not only keeps fault information
during the convolution striding and pooling layers, but also can

extract features from multiscales by the dilated convolution op-
eration, which makes the C-CNN method more suitable for fault
diagnosis under nonstationary conditions. In addition, because
traditional gradient decrease algorithms enable the optimization
with difference of convex objective functions converges to a
local minimum or a saddle point, the iterative usage of gradient
decrease algorithm in the proposed progressive optimization
algorithm can guarantee the stability of learning procedure by
decomposing the parameters into several parts and optimizing
the C-CNN from bottom to top in a progressive manner, which
can make the converge procedure more smooth and extend the C-
CNN to motor fault diagnosis applications under nonstationary
conditions. As a result, the progressive optimization algorithm
also shows advantage in dealing with nonstationary signals, as
shown in Fig. 12(b). In this experiment, classes 2 and 4 are
the most confusion classes. It can be seen from Table II and
Fig. 12(c) and (d) that the confusion between classes 1 3, and 4
is increased in C-CNN, and the confusion between classes 1 and
5 is increased in D-CNN compared with the proposed method,
which illustrates that some fault information of classes 1, 3, and
4 cannot be extracted from one scale, and the fault information
of bowed rotor and high impedance are lost by the convolution
striding and pooling. Then, it can found from Fig. 12(e) that the
first four classes are seriously confused by the traditional CNN,
this is because the traditional CNN focuses its receptive field in
a local area by a fixed kernel, which can be useful in image
recognition. But vibration signals are different from images,
the global perception is as important as local perception. Fault
diagnosis based on a long vibration signal can be more accurate
than a short vibration signal segment. It can be seen from Fig. 13
that the interclass distances in this experiment are larger than
the first experiment under constant operational conditions, and
the intraclass distances are smaller, which demonstrates that the
fault diagnosis under variable operational conditions is more
difficult. As shown in Fig. 13(a), the interclass distance of the
proposed C-CNN method is largest, which shows that the pro-
posed method can extract more representative and distinguishing
information than traditional CNNs.

Then, to further illustrate the diagnose process of the proposed
method, the train accuracy and test accuracy of each epoch are
shown in Fig. 14. It can be seen from Fig. 14 that the convergence
in this experiment is not as stable as the first experiment. This is
a reasonable result. The oscillatory variation may result from the
changeable operational conditions. Although the train and test
accuracy begin to shock after epoch 50, the average accuracy
is still better than 90%, which is an improvement for motor
fault diagnosis under nonstationary conditions. Then, based on a
GPU server with a NVIDIA Tesla P100, C-CNN is implemented
repeatedly to predict the motor fault with the whole testing
sets and record the processing time for 200 times, both on the
cases of constant and variable rotating speed. The cumulative
distribution function (CDF) figure is drawn in Fig. 15. It can be
seen from the figure that the median processing time to make one
fault prediction is between 7 and 9 ms. Therefore, the proposed
method can perform better than traditional CNNs without the
sacrifice of efficiency.
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Fig. 12. Confusion matrix of (a) the proposed method, (b) the C-CNN without progressive optimization algorithm, (c) the C-CNN without dilated
convolution, (d) traditional CNN with dilated convolution, and (e) traditional CNN without dilated convolution. (Best viewed in zoom up.)

Fig. 13. Feature visualization via t-SNE of (a) the proposed method, (b) the C-CNN without progressive optimization algorithm, (c) the C-CNN
without dilated convolution, (d) traditional CNN with dilated convolution, and (e) traditional CNN without dilated convolution.

Fig. 14. (a) Training accuracy and (b) testing accuracy of every epoch.

Fig. 15. CDF figure of the recorded time both under the constant and
variable rotating speed.

Because of the dilated convolution structure, the proposed
C-CNN method is also robust to missing data. To evaluate
the performance of C-CNN on the case of missing, 0%, 10%,
20%, 30%, and 40% sampling points have been removed from
the original samples, respectively. Then, linear interpolation is

TABLE III
DIAGNOSIS ACCURACY OF THE PROPOSED METHOD UNDER DIFFERENT

MISSING DATA RATE

applied to scale the samples back to the time series with 512
points. After the operations, the C-CNN is utilized to analyze
the removed-then-interpolated data. The results of the constant
and variable rotating speed are shown in Table III. It can be
seen that when the missing data rate is less than 20%, there is
little performance degradation of the proposed method. When
the missing data rate is 30% and 40%, the performance of the
proposed method degrade for more than 5%. Therefore, it can
be concluded that the proposed method has robust to missing
data when the missing data rate is less than 20%. But when
the missing rate is larger than 30%, the diagnosis accuracy will
deteriorate drastically.

V. CONCLUSION

This article proposed a novel motor fault diagnosis method
named C-CNN. Then, based on the natural structure of C-CNN,
a progressive optimization algorithm was proposed for a better
convergence. As an improved CNN model, C-CNN not only
inherits the advantages of the traditional CNN that can extract
features from vibration signals directly, but also increase the
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stability and accuracy of the proposed method and make the
proposed method more suitable for motor fault diagnosis un-
der nonstationary conditions. Two experiments were conducted
under constant speed and variable speed, respectively, to verify
the effectiveness of C-CNN method. The experimental results
showed that thanks to the cascade structure, the information
loss during the convolution striding and pooling can be avoided.
In addition, dilated convolution operation showed advantages
in feature extraction from multiple scales, which extends the
applications of CNN to fault diagnosis under nonstationary
conditions. Finally, by decomposing the parameters into sev-
eral parts and optimizing the C-CNN from bottom to top in
a progressive manner, the progressive optimization algorithm
makes the C-CNN more suitable for motor fault diagnosis
under nonstationary conditions. The comparison results with
four different kinds of CNNs also illustrated the improvement
of diagnose accuracy by the proposed method. Note that early
failures and multiple combined failures were two difficult issues
needed to be addressed, future works can be focused on how to
utilize the powerful feature extraction of C-CNN for weak or
coupled fault feature extraction.
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