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Abstract—In modern industrial systems, components
have complex interactions with each other, which makes it
become a challenging task to identify the operational con-
ditions of industrial systems. Considering that an industrial
system, the embedded components and their interactions
can be expressed as nodes and edges in a graph, re-
spectively. Therefore, graph representation algorithms are
powerful tools for fault diagnosis of industrial systems. As
one of the most commonly used graph representation algo-
rithms, graph neural networks (GNN) mainly follow the law
of “learning to attend.” GNN extract training data features
learn the statistical correlations between features and la-
bels, resulting in the attended graph favoring for accessing
noncausal features as a shortcut for prediction. This short-
cut feature is unstable and depends on the data distribution
characteristics in the training dataset, which reduces the
generalization ability of the classifier. By performing the
causal analysis of GNN modeling for graph representation,
the results show that shortcut features act as confounding
factors between causal features and predictions, causing
classifiers to learn wrong correlations. Therefore, to dis-
cover patterns of causality and weaken the confounding
effects of shortcut features, a causal-trivial attention graph
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neural network strategy is proposed. First, node and edge
representations are given by estimating soft masks. Sec-
ond, through disentanglement, both causal features and
shortcut features are obtained from the graph. Third, the
backdoor adjustment of the causal theory is parameterized
to combine each causal feature with a variety of shortcut
features. Finally, comparative experiments on the three-
phase flow facility dataset illustrate the effectiveness of the
proposed method.

Index Terms—Causal intervention, complex industrial
processes, fault diagnosis, graph neural networks (GNN).

ACRONYMS AND ABBREVIATIONS
AUC Area under curve.
CTA-GNN Causal-trivial attention graph neural network.
GAT Graph attention networks.
GNN Graph neural networks.
IAGNN Interaction-aware graph neural networks.
KNN K-nearest neighbor.
MLPs Multilayer perceptrons.
PKT-MCNN Progressive knowledge transfer-based multi-

task convolutional neural network.
ROC Receiver operating characteristic.
SCM Structural causal model.
t-SNE t-distribution stochastic neighbor embedding.
TFF Three-phase flow facility.

I. INTRODUCTION

A S TECHNOLOGY continues to evolve in the industrial
field, the cost of running industrial systems and processes

in a factory increases exponentially. Therefore, an effective
diagnosis system is needed to monitor the industrial process,
replace manual detection methods, reduce maintenance costs
to secure industrial systems. The diagnosis system includes
multiple measurement devices, but because of the scale and
complexity of today’s industrial processes, these device readouts
have high dimensions and complex interactions [1]. Therefore,
manual fault identification in the past is not advisable, and it
was necessary to rely on the deep architecture of the multilayer
nonlinear data processing unit in the deep learning algorithm
for feature learning to identify faults. After research, the fault
diagnosis of complex industrial processes is a classification
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problem using multivariate time-series signals, which has re-
ceived extensive attention [2], [3], [4]. Due to the complex inter-
action and close connection between various components, once
a fault occurs in a certain position, multiple components may
produce abnormal readings, affecting the operation of the entire
process [5]. In addition, different faults can lead to abnormal
readings of different components, and the relationship between
components is difficult to find. For fault diagnosis, it is necessary
to extract the interactions between multiple components and
learn hidden information in time-series signals.

Most of the current mainstream industrial process fault diag-
nosis methods are model-based and data-driven techniques [6],
but both of them have their limitations. As the systems become
more and more complex and changeable, model-based meth-
ods [7] may not be as suitable for modern industrial systems, so
scholars have proposed data-driven methods. The data-driven
methods detect anomalous variables or identify fault types by
extracting data features and performing statistical analysis [8] or
learning discriminative feature [9], [10] based on these features.

The existing data-driven fault diagnosis methods mostly em-
phasize the signals of several independent components in in-
dustrial systems, while ignoring the interactions between differ-
ent components. Often, there are complex interactions among
components. For example, if a certain part of the system fails,
multiple components related to it will generate abnormal sig-
nals. By fusing data from multiple components, fault diagnosis
can be better achieved. To mine complex interactions among
components, graph data with topological structure [11] can
accomplish this task. Therefore, structural property graphs are
used to describe industrial process data, where each compo-
nent corresponds to a node, and the edges between nodes can
be learned based on the similarity of component signals. The
component signals in different faulty modes are different, and
the learned edges are also different. Then, different topological
graph structures are obtained. By learning such a graph structure,
the hidden fault information can be mined, which allows us to
identify the fault type [9], enables to transform the task into a
graph recognition problem.

In order to distinguish the topological graph structures of
different faulty modes, it is very important to get a graph
construction method that can represent the signal information
of components and the interaction between components. The
interaction among components can be explored by building a
graph based on the similarity relations among the components,
and the K-nearest neighbor (KNN) [12] algorithms can be used
to obtain the edges connecting the components. There is also
a need for a graph classification algorithm that can learn fault
information-oriented graph representations while maintaining
graph specificity, thereby distinguishing topological graphs of
different faults.

Graph neural networks (GNN) [13] algorithms applied in var-
ious fields have shown excellent graph recognition performance
and can be used to learn error-oriented graph representations,
which is an efficient way to fuse information from multiple
components through a message passing mechanism. However,
due to the complex structure of the graph and the large amount

of signals, it is very important to find the key parts of the
input graph and filter out the irrelevant parts with the help of
the powerful representation learning ability of GNN [14]. For
example, finding normal signals and abnormal signals in mul-
tiple components is of vital importance. The abnormal signals
belong to the key parts, and different subgraphs are classified into
corresponding fault types based on the key parts. Attention [15]
and pooling [16] learning methods that are currently widely
used adopt the law of “learning to attend.” These methods mine
the hidden mutual information between the attended graph and
the real label, leading to the utilization of shortcut features
for decision making. These features arise from factors such
as sample selection or environmental noise, and that they are
discriminative but noncausal. However, this ability is limited to
the same distribution as the training dataset. The distribution
characteristics of the test data are usually different from the
training data, resulting in learning shortcut features that can
only show good performance on the training set and have poor
generalization ability, which hinders them in key deployment
in the application. Then, a method should be used to avoid
learning shortcut features, but to find the essence that affects
the classification effect, that is, causal features.

To address this issue, a causal-trivial attention graph neural
network (CTA-GNN) strategy [17] is proposed. This strategy
promotes the attended graph to learn the causal features of the
input and alleviates the interference of the shortcut features,
thereby maximizing their causal influence on the predicted la-
bels, which solves the above problems. Specifically, an attention
module is first added to the input graph to generate estimates of
causal and shortcut features. Then, the backdoor adjustment for-
mula is parameterized based on the causality, combining causal
estimates with shortcut estimates and making stable predictions.
Finally, the CTA-GNN strategy is used for graph recognition,
and experimental results on the three-phase flow facility (TFF)
dataset demonstrate the effectiveness of CTA-GNN.

The main contributions of our work are summarized as fol-
lows:

1) Toward the current generalization problem of attention-
based and pooling-based GNN in fault diagnosis, a causal
GNN framework is proposed, which attributes the prob-
lem to the confounding effect of shortcut features.

2) Aiming at the problem that shortcut features and causal
features are difficult to deal with, a CTA-GNN strategy
is proposed to filter out shortcut features while mining
causal features. The strategy is divided into three stages:
estimate the soft mask, disentanglement, and causal in-
tervention.

3) Experiments on TFF datasets demonstrate the effective-
ness of CTA-GNN, and more visualizations and in-depth
analysis demonstrate the interpretability and rationality
of CTA-GNN.

4) By comparing with existing fault diagnosis algorithms,
it is proved that the CTA-GNN model can filter out
shortcut features while learning causal features, perform
more stable classification, and have better generalization
ability.
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II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

1) Component Signal Fragment: The extraction of signals
is usually obtained by components. Different components are
distributed in various positions in the industrial system, so the
generated signals form n original measurement variables. Dur-
ing time t, the signal fragment generated by the ith component
is si = (s1

i , s
2
i , s

3
i . . ., s

t
i). However, since the industrial system

runs for a long time, the signal fragment obtained has a large span
and is usually difficult to handle, so obtaining several signal
fragments through window sliding is needed, which can be
expressed as wj = (st−m+1

i , st−m+2
i , . . ., sti) ∈ Ω. Since signal

fragments are stable over a short period of time and do not change
greatly, they can be used as input for graph-structured modeling.

2) Input Graph: The input graph is denoted by G = {V,E}
with vertices vi ∈ V and edges ei,j ∈ E, where vertices repre-
sent components in industrial systems and the edges represent
the correlations between them. The adjacency matrixA ∈ Rn×n

is used to record the details of the entire graph, whereA[i, j] = 1
if edge (vi, vj ∈ E), otherwise A[i, j] = 0. The node features
can describe the component signal fragment, which is expressed
symbolically as X ∈ Rn×m, m is the size of signal fragments.
GConv(·) represents the GNN module, where H ∈ Rn×d rep-
resents the node representation matrix.

B. Attention Mechanism in GNN

The attention mechanism can focus on key information and
filter out unimportant information. In GNN, the attention mech-
anism can be used on nodes or edges, which can help us find
the key parts of the whole graph, and these key subgraphs can
better help us accomplish the task goal.

For the edge-level attention mechanism, the attention matrix
Medge ∈ Rn×n is constructed using parameters and node rep-
resentations. Some studies pass weighted messages to diffuse
node information and aggregate information from other nodes
to represent node information.Then get the updated node repre-
sentations H′:

H ′ = GConv(A�Medge, H). (1)

For the node-level attention mechanism, Mnode ∈ Rn×1 de-
notes the attention matrix, which can be obtained using a neural
network. To get the most attentive node representations, some
studies give the self-attention masks

H ′ = GConv(A,H �Mnode). (2)

In the above two equations, � represents the Hadamard
product, that is, the product of corresponding elements. Then,
perform further pooling operations on the output node represen-
tation Hout and give the graph representation hG by the readout
function freadout(·)

hG = freadout(h
out
i |i ∈ V ). (3)

Finally, the graph representation is transformed into a proba-
bility distribution zG. The classifier Φ can be used

zG = Φ(hG). (4)

Fig. 1. Structural causal model.

They minimize the following experiential risks, following the
law of “learning to attend”:

LCE = − 1
|D|

∑

G∈D
y�Glog(zG) (5)

where LCE is the cross-entropy loss [19] computed on the
training dataD. yG is the ground-truth label. Since this empirical
loss will depend on the distribution characteristics and statistical
correlations of the training data. Thus, this learning strategy
obtains predictive shortcut features without finding key causal
features.

C. Causal-Trivial Attention

To solve the above problems, both causal and trivial attention
mechanisms are needed on the input graph to find both causal and
shortcut features. Since the causal feature is the essential feature
to distinguish different fault topology graphs, the corresponding
label of the graph representation learned by the causal attended
graph should be considered as ground-truth. While the trivial
attended graph is complementary to the causal attended graph,
the labels corresponding to the graph representations it learns
cannot fully distinguish fault representations, so its predictions
are averaged over all classes. Our goal is to learn these two
attended graph representations to obtain causal features and
shortcut features, which can be applied to fault diagnosis.

III. PROPOSED FAULT DIAGNOSIS METHOD

In the following, a CTA-GNN framework based on informa-
tion of multivariate signal fragments is proposed. First, the exist-
ing problems in GNN learning are analyzed from the perspective
of causality, and shortcut features are identified as confounding
factors between causal features and predictions. Then propose
a CTA-GNN framework to weaken confounding effects and
improve model generalization. The framework consists of three
essential parts: 1) estimate the soft masks, giving node and edge
representations; 2) disentanglement, get causal graph and trivial
graph through two loss functions; and 3) causal intervention,
the causal intervention diagram is obtained through the backdoor
adjustment formula, and the learning goal of CTA-GNN is given.

A. Insights Into GNN From a Causal Perspective

According to the process of the GNN model, the relationship
between variables into a structural causal model (SCM) can be
built, as shown in Fig. 1. In this figure, the arrows represent the
causal relationship, and the model can clearly show the causal
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relationship between the five variables. SCM is explained as
follows:

1) C ← G→ S: The variable S represents the shortcut fea-
ture. It is often caused by the chance of sample selection
or learned environmental noise features. The variable C
represents the causal feature. It can reflect the essential
properties of the graph G. The causal effect is established
due to the coexistence of shortcut features S and causal
features C.

2) C → R← S: The variable R represents the graph rep-
resentation obtained from both the shortcut feature S
and the causal feature C and then get the input of GNN
learning strategy.

3) R→ Y : After obtaining the graph representation R, it is
used as the basis for learning a classifier that we can use
to classify the input graph, denoted by the variable Y .

By learning the structural causal model of GNN, it has been
found that there is a backdoor path between C and Y , i.e.,
C ← G→ S → R→ Y . There is no doubt that the shortcut
feature S is a confounding factor between C and Y . Because
of the existence of this backdoor path, C and Y form a false
relationship, and the shortcut feature S needs to be avoided. In
order for the model to classify graphs according to the causal
feature C and obtain accurate classification results, blocking the
backdoor path is of vital importance.

B. Backdoor Adjustment to Block the Backdoor Path

In order to remove the influence of the confounding factor S,
and then make the model use causal features for classification,
it is necessary to eliminate the backdoor path. The solution
provided by causality theory can be used: perform do calculation
on the causal feature C, and then get Pm(Y |C) = P (Y |do(C))
to block the backdoor path. The characteristics of the shortcut
will not change due to blocking the backdoor path, so the
marginal probability P (S = s) is stable under the intervention,
that is, P (s) = Pm(s). In addition, the causal effect between C
and S has nothing to do with Y ’s response to C and S, they are
independent of each other, and then the conditional probability
P (Y |C, s) is also constant, that is, Pm(Y |C, s) = P (Y |C, s).
Finally, after the causal intervention, the causal featureC and the
shortcut feature S are independent, that is, Pm(s|C) = Pm(s).

Based on the above statement, the following equation can be
obtained:

P (Y |do(C)) = Pm(Y |C)

=
∑

s∈τ
Pm(Y |C, s)Pm(s|C) (Bayes Rule)

=
∑

s∈τ
Pm(Y |C, s)Pm(s) (Independency)

=
∑

s∈τ
P (Y |C, s)P (s)

(6)
where τ represents the confounding set; P (Y |C, s) represents
the conditional probability of the causal featureC and confound-
ing factor s, and P (s) is the prior probability of confounding

factor s. Equation (6) is often referred to as backdoor adjust-
ment, which can help us block the backdoor path and eliminate
confounding effects. However, the confounder set τ is difficult
to obtain and cannot directly interfere with graph data. In the
following, a solution will be given.

C. Causal and Trivial Attended Graph

When the input graph G = {V,E} is obtained, the soft mask
is expressed as Medge ∈ Rn×n and node features as Mnode ∈
Rn×1. Given a soft mask M , its complementary mask can be ex-
pressed asM = 1−M . If a graph is represented in another form
G = {A,X}, whereA records the detailed structure information
of the graph and X is a matrix used to describe node characteris-
tics. Then, a graph can be divided into two graphs: G1 = {A�
Medge, X �Mnode} and G2 = {A�M edge, X �M node}. After
research [20], it can be considered that the classes of graphs can
often be derived from more essential causal features. Thus, the
attended graph that aggregates the causal features is defined as
the causal attended graphGc, and the corresponding graph is the
trivial attended graphGt. However, in practical applications, the
attended graph with ground-truth is usually not directly usable.
Therefore, the two types of attended graph need to be obtained
through learning masks: Gc = {A�Medge, X �Mnode} and
Gt = {A�M edge, X �M node}.

D. Causal-Trivial Attention Graph Neural Network
(CTA-GNN)

To achieve the aforementioned backdoor adjustment, the
CTA-GNN framework is proposed. The overview of CTA-GNN
is given in Fig. 2.

1) Calculating Soft Masks: First, an attention module is re-
quired to filter out causal and shortcut features. Then, according
to the obtained features, causal proposals and trivial proposals
are generated. Denote the GNN-based encoder by f(·) and
the input graph by G = {A,X}, the nodes are represented as
follows:

H = f(A,X). (7)

In order to obtain the attention score, it can be done sep-
arately from the node-level and edge-level perspectives. Then
two multi-layer perceptrons (MLPs) are used: MLPnode(·) and
MLPedge(·). For node vi and edge (vi, vj) can get

αci , αti = σ(MLPnode(hi)) (8)

βcij , βtij = σ(MLPedge(hi‖hj)) (9)

where αci , βcij is the node-level attention score of node vi in
the causal attended graph and the edge-level attention score of
edge (vi, vj) and αti , βtij are used for trivial attended graphs.
σ(·) is the softmax function, ‖ represents the stitching operation.
Obviously, αci + αti = 1, βcij + βtij = 1.

The attention scores αci , αti , βcij , βtij are used to construct
the soft masks Mnode,M node,Medge,M edge. Finally, a prelim-
inary representation of the causal and trivial attended graphs
is obtained using the graph G: Gc = {A�Medge, X �Mnode}
and Gt = {A�M edge, X �M node}.
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Fig. 2. Overview of CTA-GNN.

2) Disentanglement: Initial attended graphs are created by
calculating soft masks. To obtain causal and trivial attended
graphs, representations of the attended graphs can be obtained
using GNN modules, respectively. Finally, the category of the
input graph is predicted by the readout function and the classifier:

hGc
= freadout(GConvc(A�Medge, X �Mnode))

zGc
= Φc(hGc

) (10)

hGt
= freadout(GConvt(A�M edge, X �M node)

zGt
= Φt(hGt

). (11)

The purpose of causal attended graphs is to estimate causal
features whose representations can be classified as ground-truth
labels. Correspondingly, the supervised loss on the graph clas-
sification problem is defined as

Lsup = − 1
|D|

∑

G∈D
y�Glog(zGc

). (12)

In contrast, trivial attended graphs are designed to approx-
imate noncausal trivial patterns. Therefore, the prediction of
the trivial attended graph can be motivated for all fault classes
known, and the unified loss on the graph classification problem
is defined as

Lunif =
1
|D|

∑

G∈D
KL(yunif, zGt

) (13)

where KL is the KL-Divergence and yunif is the uniform dis-
tribution. Causal features are distinguished from trivial features
by optimizing the above two objectives. However, a previous
study [21] showed that real-world graph data are noisy, which
undoubtedly leads to a larger correlation between the causal
part and the label than between the full graph and the label.
Furthermore, due to the existence of trivial patterns, the causal
attended graphs obtained by the above disentanglement methods
are unlikely to eventually converge to the full graph.

3) Causal Intervention: Backdoor adjustment can effectively
weaken the confounding effect by stratifying the confounding
factors and pairing each layer of the target causal attended graph
with the trivial attended graph to form the intervened graph.
Due to the irregularity of the graph data, it prevents us from
intervening at the data level, only implicitly at the representation
level, and proposes a loss guided by backdoor adjustments

zG′ = Φ(hGc
+ hGt′ ) (14)

Lcaus = − 1
|D| · |τ̂ |

∑

G∈D

∑

t′∈τ̂
y�Glog(zG′) (15)

where zG′ is the classification result of implicit intervened graph
G′ in classifierΦ.hGc

is the representation of the causal attended
graph Gc. hGt′ is the representation of layered Gt′ . τ̂ is an
ensemble of estimates of layered trivial attended graphs that
yield trivial features present in the training data.

The random addition method is used to intervene (14). In
addition, (15) is called the causal intervention loss [22] at the rep-
resentation level. Due to the shared nature of causal features, it
enables the intervention graph to make stable predictions across
different strata. At last, the learning objective of CTA-GNN is
given, which is the total loss

L = Lsup + λ1Lunif + λ2Lcaus (16)

where λ1 and λ2 are constants that control the degree of disen-
tanglement and causal intervention, they are hyperparameters
that can be tuned.

IV. EXPERIMENT RESULTS AND COMPARISONS

A. Datasets

The TFF [23] designed by Cranfield University is one of the
typical industrial systems. This facility can be used to control a
pressurized system, with sensors distributed at different places
in the system to measure water flow, oil flow, and air flow. The
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Fig. 3. Overall structure and sensor distribution of the three-phase flow
facility.

description of the facility is shown in Fig. 3. The system is an
industrial-scale workbench of authenticity and sophistication
that works under different operating conditions and provides
experimental data. Pipes and gas–liquid two-phase separators
with different pore sizes and geometries constitute the test setup.
During the experiment, a total of two process inputs, including
air flow and water flow setpoints, were continuously modified
to simulate variable operating conditions and finally obtain
corresponding data. It has a total of 24 components distributed in
different places in the system. Their locations are predesigned to
measure density, temperature, pressure, and flow. There are five
types of water flow and four types of air flow, and we can choose
one of them as the process input. After calculation, 20 different
input combination types can be created. TFF dataset can be
downloaded from https://www.mathworks.com/matlabcentral/
fileexchange/50938-a-benchmark-case-for-statistic-process-
monitoringcranfield-multiphase-flow-facility.

Due to the complex operating environment of the system,
twenty sets of inputs were obtained by modifying the air flow
and water flow, and they were simulated to obtain three sets of
data. For the fault dataset, the system simulates a total of six
faults, which are used to represent some typical faults that may
occur in practice. It should be noted that the faults will not occur
until after a period of time under normal conditions, and are
not immediately generated faults. After a fault occurs, it will
endanger the system, and when it is severe enough, it will return
to a normal state. At this point, the fault state will be suspended.
Therefore, the data generated by each fault type have transition
information from the initial state to the fault state. In order to
improve the generalization ability of the model, considering
both the steady-state condition and the changing condition, there
are multiple datasets representing the same fault type. Each
component output is preprocessed by max–min normalization.
In order to better extract fault feature information, normal data
are deleted from fault data, and fragments with 50 s information
are taken as samples.

B. Experimental Settings

1) Current Baseline Methods: To demonstrate the perfor-
mance of our CTA-GNN method in real industrial systems,
the CTA-GNN method is compared with existing baseline
methods: Graph attention networks (GAT) [24], progressive

knowledge transfer-based multitask convolutional neural net-
work (PKT-MCNN) [25], interaction-aware graph neural net-
works (IAGNN) [26].

1) GAT: In order to obtain the edge weight and measure the
importance of the edge, GAT will learn according to the
node features. Structured data can be directly applied to
GAT for industrial fault classification.

2) PKT-MCNN: In order to perform knowledge transfer for
multitask CNN models, PKT-MCNN designs a coarse-to-
fine framework to obtain a hierarchical structure of fault
types, which is finally used for large-scale fault diagnosis.

3) IAGNN: IAGNN classifies the fault using an interactive
perception and fused data approach, learning multiple
interactions between components and extracting fault fea-
tures from each subgraph. Among them, when extracting
subgraph fault features, a message passing mechanism is
used.

2) Evaluation Indicators and Parameter Settings: In order to
provide stronger evidence, the accuracy, Micro F1, Macro F1,
and confusion matrix are used to compare with other methods.
Extensive experiments were performed using various baseline
methods and the CTA-GNN model, selecting the hyperparame-
ters that provided the best results for optimal performance and
training efficiency for comparison. For the TFF dataset, the
input graph contains a total of 24 nodes, corresponding to 24
sensors. The feature size of each node is 50, which represents
the intercepted 50 s signal segment. In addition, the maximum
epoch is 100 and the learning rate is 0.001. In the loss function,
λ1 is set to 1.0 and λ2 is set to 0.5.

C. Fault Classification Performance

When comparing the fault diagnosis performance of different
methods, with the help of the model confusion matrix during the
test, after visualization, it can be used to intuitively understand
the performance of each model in samples of different types
of faults. The visualization results of the confusion matrix of
each model are shown in Fig. 4. In addition, in order to avoid
class imbalance in the test data, we use the receiver operating
characteristic (ROC) curve to evaluate different classification
models, and then use the area under curve (AUC) to compare
the models more clearly. The microaverage ROC curve and the
macroaverage ROC curve are shown in Fig. 5. Finally, as the
training process progresses, the performance during the test will
also change. To examine this process, record their F1 scores on
the test set and observe their changes. The F1 score is one of the
important indicators to measure the classification accuracy of
the model. It comprehensively utilizes the accuracy and recall,
which is more effective and reliable. The Micro F1 score and
Macro F1 score results are shown in Fig. 6. Table I shows the
comparison of classification performance of different models
on the TFF dataset. Table II show the computational time of
different models.

Compared with the baseline methods, the CTA-GNN model
performs best on the TFF dataset. Recent results demonstrate
that graph embeddings learned by CTA-GNN can effectively
reveal fault characteristics in process industries. By comparing
with the performance of GAT, it is found that the CTA-GNN
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Fig. 4. Confusion matrix comparison. (a) GAT. (b) PKT-MCNN. (c) IAGNN. (d) CTA-GNN.

Fig. 5. ROC curve comparison. (a) GAT. (b) PKT-MCNN. (c) IAGNN. (d) CTA-GNN.

Fig. 6. F1 score comparison. (a) Micro F1 score. (b) Macro F1 score.

model can comprehensively utilize the original node information
and learn the correlation between node information, so as to
perform better. This is because the GAT model uses an attention
mechanism to calculate weights for the features of adjacent
nodes in the graph and aggregate node feature information.
However, the graph structure is not considered when calculating
the weight of adjacent node features. So GAT does not focus on
the interactions between different components. This suggests
that complex interactions between different components are
also part of the important fault signature. The graph structure
descriptions of different fault types are used as the input of the
CTA-GNN model as shown in Fig. 7, while GAT uses fully
connected graphs. Such a graph has edge weights without sparse

TABLE I
CLASSIFICATION PERFORMANCE COMPARISON

TABLE II
COMPUTATIONAL TIME COMPARISON

operations, which will bring a lot of noise to the fault features,
making it difficult to learn the fault features. This undoubtedly
makes it difficult to distinguish between different fault types.

Different from GAT, PKT-MCNN is a structure learning al-
gorithm based on the clustering of different coarse-grained node
fault types. To obtain more general fault information, the PKT-
MCNN structure can learn both coarse-grained and fine-grained
tasks. But compared with CTA-GNN, PKT-MCNN controls the
model to accomplish different learning objectives by changing
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Fig. 7. Graph structure illustration.

the attention weights of coarse-grained and fine-grained tasks.
But in reality, the scale of the target classification task is small
and the coarse-grained structure is fuzzy, resulting in worse
classification performance than CTA-GNN.

IAGNN overcomes the shortcomings of GAT and PKT-
MCNN, and adaptively learns the edge weights of heteroge-
neous graphs composed of component reads through an attention
mechanism. Subgraphs of each edge type are then subjected to
fault feature extraction using multiple independent GNN blocks.
Finally, with the help of a weighted sum function, the subgraph
features are aggregated to obtain graph embeddings. Unlike the
CTA-GNN model, multiple independent GNN blocks perform
fault extraction on subgraphs of each edge type, tending to learn
the external correlation between the input image and the real
label, and cannot distinguish the more essential causal features,
resulting in its classification effect being inferior to CTA-GNN.

CTA-GNN revisits GNN modeling for graph classification
from the perspective of causality, alleviating the confounding
effect. Different from other baseline models, CTA-GNN uses
an attention module to learn causal and shortcut features for a
given graph. Each causal feature is then combined with different
shortcut features. Fig. 8 shows the simplified 2-D feature maps of
original graph data and learned fault features of the CTA-GNN
model, via the t-distribution stochastic neighbor embedding (t-
SNE) method [27]. It can be seen that due to the ubiquity of
environmental noise and fault degree, the sample characteristics
of the same fault are diverse. After the learning of the CTA-GNN
model, the features of the same fault are aggregated together,
making it easy to distinguish.

In terms of computational time, by measuring the time of each
test epoch, the results shown in Table II are obtained. The CTA-
GNN model has the shortest computational time, which means
it can get classification results faster. For the other mentioned
baseline models, the computational time is longer than that of the
CTA-GNN model, especially the IAGNN model is the slowest.

From the experimental results, the fault diagnosis effect of
the CTA-GNN model on the TFF dataset is better than that of
the baseline method. The causal characterization method using

Fig. 8. Use the t-SNE method to visualize the results. (a) Original
graph data space. (b) CTA-GNN learning space.

the CTA-GNN model can reveal the essential causes of failures
in the process industry. The CTA-GNN model is capable of
simultaneously learning causal features and shortcut features,
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Fig. 9. Micro F1 score change comparison. (a) GAT. (b) PKT-MCNN. (c) IAGNN. (d) CTA-GNN.

combining each causal feature with different shortcut features,
and finally obtaining excellent fault diagnosis results.

D. Ablation Experiment

In order to prove the generalization performance of the model,
it is assumed that a certain sensor malfunctions, resulting in
all signal fragments generated by it being 0. In this case, the
KNN algorithm is used for the signal fragments generated by
the 24 components, and a new topological map is calculated and
input into the original model. A normal condition is defined as a
known condition, and a condition where a sensor malfunctions
is defined as an unknown condition. Micro F1 score is used as an
evaluation indicator to observe changes in model performance,
as shown in Fig. 9. The results show that the proposed CTA-GNN
model performs best under unknown conditions, which is almost
consistent with the fault diagnosis under known conditions. For
the PKT-MCNN model, the failure of the sensor has a great
influence on the classification effect of the model, indicating
that the PKT-MCNN model is not stable enough. While the GAT
model and the IAGNN model are also affected by sensor failures,
their generalization ability is still inferior to that of the CTA-
GNN model. Therefore, in the case of a certain sensor failure,
the CTA-GNN model can still maintain a stable classification,
indicating the strong generalization ability of the model.

V. CONCLUSION

In this article, first transform the complex industrial fault
diagnosis problem into a graph recognition task, and then re-
understand the GNN modeling process of graph recognition
with reference to causality theory. Current baseline methods

prefer to utilize shortcut features to perform calculations and
give prediction results, but in fact, these features are obfuscators
between causal features and predictions. The shortcut features
build a backdoor path that misleads GNN model to learn spu-
rious correlations. With the purpose of weakening confounding
effects, a CTA-GNN strategy is used for industrial fault diagnosis
tasks. It forces the GNN model to learn and utilize causal features
and ignores the shortcut part. Experiments on the TFF dataset
show that the CTA-GNN model achieves satisfactory results in
various fault diagnosis tasks, which verifies its effectiveness.
Future research includes applying the CTA-GNN strategy to
open set recognition, which requires not only accurate diagnosis
of known faults using causal features, but also effective identifi-
cation of unknown faults to prevent new faults from hiding and
affecting industrial production.
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