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Abstract—In smart factories, there have been increasing
requirements for industrial Big Data analysis of complex
systems. With the rapid development of industrial cyber-
physical systems (ICPS) and communication techniques,
the scale and complexity of industrial data are growing
explosively, which not only provides massive operational
information of industrial systems but also brings chal-
lenges in Big Data analysis. In this paper, to overcome the
intra/inter-class distance unbalance and local minima prob-
lems in traditional deep learning-based methods, an indus-
trial Big Data analytical system based on a coarse-to-fine
network (CTFN) is proposed for intelligent industrial Big
Data analysis and condition monitoring of complex system.
In addition, considering the gap between semantic compre-
hension and natural characteristics of different failures, a
structure learning algorithm is proposed to get rid of the
complicated hyper-parameters and implement intelligenti-
zation authentically. Finally, an experimental verification
was carried on a nuclear power system dataset with 362,994
samples from 66 fault categories. The results demonstrate
the effectiveness and superiority of the proposed method in
condition monitoring of industrial systems, which provides
a promising tool for industrial Big Data analysis in ICPS.

Index Terms—Coarse-to-fine network, industrial Big
Data, industrial cyber-physical systems, large-scale condi-
tion monitoring of complex systems, structure learning.
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I. INTRODUCTION

W ITH the rapid development of manufacturing, industrial
systems not only can produce more business value but

also are becoming increasingly complex. An untimely response
to a fault may trigger a cascading failure and large-scale black-
out, even catastrophic accidents [1]. As an effective tool to
ensure production efficiency and operation safety, operational
data analysis and condition monitoring are very important to
the industrial cyber-physical systems (ICPS) [2]. Traditional
operational data analysis methods recognize different fault types
based on the extracted features via various signal processing
techniques. In recent years, with the development of sensing
techniques, a large amount of industrial data has been produced
from monitoring systems [3], which makes data-driven con-
dition monitoring possible. Among them, deep learning (DL)
methods aim at automatically learning feature hierarchies with
features from higher levels of the hierarchy formed by the
composition of lower-level features, thereby showing the poten-
tial to make the industrial system more intelligent [4]. Several
branch DL methods have already demonstrated state-of-the-art
performance in operational data analysis tasks, including auto-
encoder [5], recurrent neural network (RNN) [6], deep belief
network (DBN) [7] and the most widely used convolutional
neural network (CNN) [8]. Considering that learning algorithms
can be a powerful tool for improving ICPS network performance,
J. Wang et al. summarized the development of learning-aided
wireless networks by investigating a series of popular learning
algorithms in ICPS, providing some specific examples and a
range of promising open issues in the future [9].

As effective as DL methods are, they still suffer from a crit-
ical problem. In literature, state-of-the-art DL-based diagnosis
methods performed well on the big dataset with several fault
types of a single or a few components, including bearings [10],
motors [11], gearboxes [12], and so on. However, in Industry
4.0, the mechanical equipment in the modern industry has been
increasingly functional and complicated [13]. Take SIEMENS
SGT-800 gas turbine as an example. It consists of an inlet,
compressor, combustor, turbine, exhaust, and other components,
which can lead to an enormous variety of faults. Therefore,
the era of Big Data in industrial systems does not only mean
a mass of data but also represents a large number of fault
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Fig. 1. Coarse-to-fine network for industrial Big Data analysis in ICPS.

types. Although DL-based methods can be a promising tool
for analyzing a large number of data with several fault types,
their performance will decrease rapidly when facing dozens or
hundreds of fault types. The reasons are as follows.

In traditional DL methods, different faults are shared with
one deep network for feature extraction and fault recognition.
This design can be effective when diagnosing the faults of a
single component but may show drawbacks when dealing with
a lot of components in operational data analysis of complex
systems. Because of the increasing diversity of different failures
will lead to the intra/inter-class distance unbalance problem in
feature space [14]. That is, the feature distance between similar
failures of one component is small and hard to distinguish, while
the feature distance between failures in different components is
significantly different and can be easily classified. As a result,
the feature inter-class distance of some similar failures can be
even smaller than the intra-class distance of some failures, which
may push the learning process away from the global optimum.
Meanwhile, when faced with large-scale operational data anal-
ysis tasks, a lot of faults will lead to the exponential growth of
parameters and structure complexity, which can cause a serious
local minima problem in deep networks [15]. Therefore, the
large-scale operational data analysis of complex systems with
various fault types not only is a typical class of mission-critical
industrial automation applications and in urgent need for the
development of ICPS and smart factory [16], but also is a hard
nut to crack due to the intra/inter-class distance unbalance and
local minima problems.

To overcome the above problems, this paper proposes an
intelligent industrial Big Data analytical system based on a
CTFN model, which is able to perform industrial Big Data anal-
ysis of industrial systems intelligently in a divide-and-conquer
strategy, thus shows great potential in ICPS and smart factories
development, as shown in Fig. 1. The main contributions of this
article are summarized as follows.

1) An industrial Big Data analytical system based on a CTFN
is proposed. Instead of diagnosing the faults of one or few

components, the proposed method aims to perform the
industrial Big Data analysis of a complete industrial sys-
tem intelligently. By spreading faults into different coarse
nodes, the intra/inter-class distance unbalance problem
can be avoided. And due to the decrease of the fault
number in one coarse task, the local minima problem can
also be mitigated. Thus, the CTFN architecture makes it
possible to address the large-scale diagnosis task intelli-
gently.

2) The design of the coarse-to-fine structure for such a
large-scale diagnosis task not only is energy-consuming
and time-wasted, but also needs enough prior knowledge.
Therefore, a data-driven structure learning algorithm is
proposed to extract the coarse-to-fine knowledge and
design an appropriate CTFN structure automatically and
intelligently.

3) A large-scale condition dataset of a nuclear power system
is collected for experimental verification of the proposed
method, which contains 362,994 samples from 66 fault
categories. The experimental results and comparison with
six state-of-the-art diagnosis methods demonstrated that
the proposed method can be a promising tool for a large-
scale diagnosis task in an industrial Big Data environ-
ment.

The remaining parts of this paper are organized as follows.
The proposed method is elaborated in Section II. In Section III,
the effectiveness and superiority of the proposed method are
validated on an operational data analysis scenario of a nuclear
power system. Finally, Section IV concludes this paper.

II. PROBLEM FORMULATION

The existing deep learning-based methods usually directly
calculate the finest granularity diagnostic result by modeling a
fault classifier from a global view, while ignoring the physical
property of each failure. For instance, given a monitoring dataset
of a nuclear power system, it is relatively easy to tell if there
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Fig. 2. Framework of the proposed CTFN for industrial Big Data analysis.

is a fault in the secondary loop according to the indexes or
distinguish if it is a heater fault or a pump fault in the secondary
loop, but it can be much harder to diagnose a finer failure directly,
such as diagnosing if there is a gas inlet valve failure or a
regulating valve failure.

Such a difficult problem can be divided into several simple
sub-problems in different granularity, and the final diagnosis
result can be obtained by performing a coarse-to-fine way along
with a CTFN architecture of fault types. In this way, a sample
is first diagnosed as a coarse-grained fault, e.g., the secondary
loop failure, and then identified as a fault of finer granularity,
e.g., gas inlet valve failure, until an expected fault type is found.

To achieve this goal, the proposed approach first learns a
coarse-to-fine architecture that consists of all fault types and
their coarse-granularity fault concepts; subsequently, different
node classifiers are trained and embedded in each non-leaf node
of the structure to identify the possible faults in their granularity,
which makes up a CTFN; finally, the CTFN makes predictions
for the test sample along with the structure in a coarse-to-fine
way, where the sample starts from the root node and diagnosed as
a child node of the current node recursively until it is diagnosed
as a leaf-node fault.

III. THE PROPOSED APPROACH

The objective of this article is to explore and exploit the
multi-granularity relations of various fault types to address the
industrial Big Data analysis problem for industrial complex sys-
tems. Formally, given training samples {{xj

i}Mi
i=1}Nj=1 inN fault

types, where xj
i is the j-th sample in the i-th fault type; Mi is

the number of samples in the i-th category; i ∈ {1, 2, . . . ,Mi},
and j ∈ {1, 2, . . . , N}, the objective of the proposed framework
is to learn a CTFN architecture T , to train the CTFN classifier

W , and to make predictions along T in a coarse-to-fine way
to obtain leaf-node diagnosis results of test samples {ŷl}tl=1,
where t is the number of test samples.

The framework of the proposed CTFN approach has two
components: CTFN architecture learning and CTFN embedded
diagnosis (See Fig. 2). In the former, an affinity matrix is first
constructed to measure the inter-class relations between differ-
ent fault categories. Subsequently, parameter-free hierarchical
community detection is designed to efficiently learn the CTFN
architecture of fault categories. In the latter, the learned structure
is embedded into the classification process by learning multiple
classifiers on nodes of the structure. During the diagnosis pro-
cedure, samples are identified from the coarse-grained nodes to
the very fine-grained nodes.

A. Coarse-to-Fine Network

CTFN organizes classes into a tree-like graph from the coarse-
grained to the fine-grained. There are two kinds of structures
in class hierarchy, tree and directed acyclic graph (DAG). The
tree structure is utilized in this work because it is the most
common and widely used (the CTFN architecture represents
a tree structure in this paper).

A tree hierarchy of the class labels represents a kind of “IS-A”
relationship between labels [17]. Specifically, Kosmopoulos
et al. pointed out that the properties of “IS-A” relationship
can be described as asymmetry, anti-reflexivity, and transitiv-
ity [18]. Define a tree as a triplet (V, E ,≺) with a set of nodes
V = {v1, v2, . . ., vn}, where E represents a set of edges between
nodes in different levels, and ≺ represents the parent-children
relationship between nodes connected by edges (“IS-A” rela-
tionship), formulated as follows:

1) Asymmetry: if vi ≺ vj then vj ⊀ vi for ∀vi, vj ∈ V;
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2) Anti-reflexivity: vi ≺ vi for ∀vi ∈ V;
3) Transitivity: if vi ≺ vj and vj ≺ vk, then vi ≺ vk for

∀vi, vj , vk ∈ V .
These properties result in the fact that an arbitrary node has

only one parent node except for the root node, which is unique
and on the top of a certain tree CTFN structure. Besides the
root node, nodes in the tree CTFN structure can be generally
categorized into several types. Typically,

1) A leaf node is at the bottom of a tree CTFN structure and
has no child nodes;

2) An internal node is an arbitrary node that is not the root
node or a leaf node;

3) A sibling node is the node that has the same parent;
4) An ancestor node is the node that has more than one-level

parent relationship with the current node;
5) The decedent nodes of a certain node are its corresponding

leaf nodes.

B. CTFN Architecture Learning

In order to deal with the complex failure relationship with dif-
ferent separability in the Big Data environment, the large-scale
diagnostic task is divided into several sub-diagnostic tasks. If this
coarse-to-fine and dendritical structure is only constructed based
on human knowledge, the semantic gap problem will be a great
barrier to improving performance. That is, when constructing the
CTFN architecture manually, the similarity of different faults is
measured by the semantic comprehension similarity of different
failures, instead of the natural characteristics of the industrial
data. As a result, the constructed CTFN architecture can be easier
for understanding, but harder for operational data analysis and
condition monitoring.

CTFN organizes classes into a tree-like graph from the coarse-
grained to the fine-grained. To automatically obtain CTFN, a
data-driven architecture learning method is also proposed in this
paper to address the above-mentioned problems.

1) Affinity Matrix Construction: The affinity matrix measures
the relation between every two categories and represents all the
relations as a weighted graph. The key point of affinity matrix
construction is to properly calculate the distance or similarity
of each two categories. Intuitively, the inter-class similarity can
be measured by calculating the similarity of all the sample pairs
of both categories, but this is computationally unacceptable for
large-scale tasks. Recently, Fan et al. used the mean vector of
samples to represent all samples of a category and computed
the inter-class similarity by the distance between the mean
vectors [19]. Although this method is efficient, it is hard to
describe the information of a category by only one sample vector.
Inspired by [20], an effective and efficient inter-class measure-
ment is applied to take high-order information of samples into
consideration.

Suppose {xi
l}Ni

l=1 are Ni samples in the i-th fault category
Ci, where C = {C1, C2, . . . , CN} is the set of all the fault
categories. The distance between each two categories can be
formulated as

D(Ci, Cj) =

√
1

NiNj

∑
s

∑
t

∥∥∥xi
s − xj

t

∥∥∥2
, (1)

where s ∈ {1, . . . , Ni} and t ∈ {1, . . . , Nj}. (1) requires Ni ×
Nj norm operations, which has a high computational cost. This
equation can be transformed to reduce the computation as

D2(Ci, Cj)=
1

NiNj

∑
s

∑
t

∥∥∥(Qi−Δxi
s

)− (Qj −Δxj
t )
∥∥∥2

,

(2)
where Qi =

1
Ni

∑Ni

l=1 x
i
l is the mean vector of the i-th category

and Δxi
s = Qi − xi

s. Note that there is a property of the mean
vector:

∑Ni

s=1 x
i
s = 0. Based on this property, the inter-class

distance measurement can be obtained as follows.

D2(Ci, Cj)=
1

NiNj

∑
s

∑
t

∥∥∥(Qi −Δxi
s

)−(
Qj −Δxj

t

)∥∥∥2

= ‖Qi −Qj‖− 2 ‖Qi −Qj‖
NiNj

Ni∑
s=1

Nj∑
s=1

(
Δxi

sΔxj
t

)

+
1

NiNj

Ni∑
s=1

(
Δxi

sΔxj
t

)2

= ‖Qi −Qj‖2 +
1
Ni

(
Δxi

s

)2
+

1
Nj

(
Δxj

t

)2

= ‖Qi −Qj‖2 + σ2
i + σ2

j , (3)

where σ2
i =

∑Ni

s=1
1
Ni

(Qi − xi
s)

2 is the variance of the i-th
category. (3) reduces the norm operations to only (Ni +Nj + 1)
in comparison with (Ni ×Nj) classical distance computation in
(1). Additionally, it contains high-order statistical information
and thus can better describe the information of every category.

To build the affinity matrix, the distance-based measurement
should be transformed into a similarity-based measurement. The
commonly used Gaussian transformation is leveraged based on
results of (3), and thus the element of the affinity matrix can be
obtained as

Aij = exp

(
−D(Ci, Cj)

δij

)
, (4)

where σij is the scaling factor.
2) Hierarchical Community Detection: With the affinity ma-

trix, the CTFN architecture can be obtained by grouping sim-
ilar categories recursively. In artificial intelligence, researchers
apply hierarchical spectral clustering to build the CTFN archi-
tecture [19], [20]. The construction of the CTFN architecture
can be divided into a top-down Bayesian process that clusters
the categories based on the previous grouping results recursively.
Specifically, given the affinity matrixA in (4), spectral clustering
is first performed to group all the possible N categories into
θ groups = {C ′

1, C
′
2, . . . , C

′
i, . . . , C

′
θ}. Then, for all the new

groups {C ′
i}θi=1, the spectral clustering algorithm [21] is applied

to all the decedent nodes of C ′
i again to generate another θ

groups, respectively. The process is terminated if it meets one of
the following conditions: (1) The number of the decedent nodes
of C ′

i is no more than θ; (2) The tree depth is larger than the
pre-defined maximum tree depth.

Although this method can build the CTFN architecture flex-
ibly, it requires two manually tuned parameters, the number of
child nodes per parent θ and tree depth Φ, which is difficult
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and time-consuming to set [22]. Suppose a given industrial Big
Data analysis task has N fault categories, the minimum value of
θmin is easily obtained as 2. The maximum value of θmax should
lead to the structure that has the largest number of superordinate
groups while each superordinate group has the minimum number
of child nodes. To this end, θmax should be N/2 because the
number of child nodes is 2 for each superordinate group, so the
possible range for θ is [2, N/2]. Similarly, another parameter
tree depth Φ ranges from [2, (2N − 1)/2]. To fully explore the
combinations of the parameters, users have to compute O(N 2)
attempts to obtain the final results, and this is unacceptable if
the category number N is very large even if the search space
can be eliminated empirically. In this regard, a parameter-free
method is used to optimize the modularity of the community.
Here, the fast community detection algorithm [23] is improved
for hierarchical community detection. For the flat version of
community detection, the key point is to compute the quality or
the modularity Qh of the h-th level. However, in the coarse-to-
fine diagnosis task scenario, Qh is needed to be computed in the
structure:

Qh =
1
2b

∑
i,j

(
Ah(i, j)− kikj

2b

)
δ(ci, cj), (5)

where Ah is the inter-class similarity matrix of the h-th level,
Ah(i, j) is the similarity degree of the edge between class i
and class j, ki =

∑
j Aij is the sum of similarity degrees of the

edges attached to the vertex class i, ci is the community to which
vertex class i is assigned, and the δ(p, q) function is 1 if p = q
and 0 otherwise, and b = 1

2

∑
ij Aij . Then, following [23], the

local modularity changes and the aggregated community are
optimized at each node v. Specifically, the gain ΔQh of the
modularity can be evaluated by removing the i-th class and
placing it in the j-th community, which is the neighbor of i.
If this gain is positive, node i is then placed in the commu-
nity for which this gain is maximum and stays in its original
community otherwise. This process is applied repeatedly and
sequentially until no further improvement can be achieved. By
applying the algorithm recursively, the CTFN architecture can be
obtained.

ΔQh =

[∑
in Sh(Ah) + 2ki,in

2b
−
(∑

tot Sh(Ah) + ki
2b

)2
]

−
[∑

in Sh(Ah)

2b
−
(∑

tot Sh(Ah)

2b

)2

−
(
ki
2b

)2
]
,

(6)

where Sh is the community in the h-th level,Ah is the similarity
matrix computed by (3) and (4),

∑
in Sh(Ah) is the sum of the

weights of the links inside Sh of which relations between nodes
are constructed by Ah,

∑
tot Sh is the sum of the weights of the

links incident to nodes in Sh, ki is the sum of weights of the
links incident to node i, ki,in is the sum of the weights of the
links from i to nodes in Sh, and b is the sum of the weights of
all the links in the network. In this way, the optimal CTFN can
be automatically obtained without any prior knowledge.

C. CTFN Embedded Industrial Big Data Analysis

After obtaining the learned CTFN architecture, it should
be embedded into the classification process for effective and
efficient industrial Big Data analysis. Specifically, a classifier on
each non-leaf node of the tree-shaped CTFN should be trained
during training; in the diagnosis process, a top-down manner
is employed by recursively diagnosing the collected data to the
child nodes with the largest probability, starting from the root
node to the leaf nodes [24]. Each classifier is responsible for
a certain subset of categories, so the original difficult problem
is decomposed into several simple sub-problems on different
nodes and thus can result in more accurate diagnosis results.

Suppose x̂l is the l-th test sample, where l ∈ {1, . . . , t}, W
is the set of trained node classifiers, wv ∈ W is the trained
classifier at node v ∈ V , the probability of sample x̂l belonging
to i-th child node of v is defined as

P i
v(x̂l) = (x̂l)

TwvI(i), (7)

where I(i) is a one-hot vector whose i-th element is 1 and others
are 0. To decide which child node of node v to be assigned for
the sample, a greedy algorithm that selects the child node with
the largest probability is used at each node:

dv = argmax
i

(
P i
v(x̂l)

)
. (8)

The test sample x̂l is recursively classified to the child node with
the largest probability dv until a leaf node is reached. In this
way, more accurate diagnosis results can be achieved by solving
a series of simple sub-problems instead of the original difficult
problem. Such a top-down and divide-and-conquer classification
can lead to higher efficiency for conventional base classifiers,
such as logistic regression and SVM. Moreover, the proposed
method can reduce the computational complexity from O(N)
to O(logN). Suppose that the base classifier uses the logistic
regression, whose transformed version softmax is common in
DNNs. For a conventional flat classifier, a multi-class classifica-
tion problem is transformed into multiple binary classification
sub-problems by constructingN one-versus-rest sub-classifiers.
In terms of fault types N , the diagnosis complexity of a con-
ventional flat classifier is O(N). In contrast, the coarse-to-fine
classifier divides N fault types into several sub-groups, wherein
each sub-group contains fewer fault types. On each granularity,
only a part of fault types is considered, and this results in a
diagnosis complexity ofO(logN) [25]. Therefore, the proposed
approach can not only benefit the diagnosis performance but
also the diagnosis efficiency. However, it is worth noting that
the testing time of the proposed approach will be longer than
the corresponding flat approach if a deep learning-based model
is used on each node. The reason may mainly be that the
computations on layers before the softmax layer are duplicate
for all base models, so this will lead to more diagnosis time for
their coarse-to-fine versions.

It is worth mentioning that refined data analysis and precise
fault location can be done with the proposed CTFN method.
On one hand, data are analyzed in different granularity of the
learned structure, thus providing general analysis on high levels
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and refined analysis on low levels. On the other hand, since fault
data are analyzed from the coarse to the fine, multi-granularity
location results can be obtained with the proposed system. For
example, supposing a heater fault occurs in the secondary loop
component, and it is first recognized as faults in the secondary
loop and then identified as a heater fault. Such a multi-level
fault location can be obtained, which provides users with more
flexible results for various scenarios.

D. Unknown Faults Detection

Conventionally, the methods of industrial Big Data analysis
are assumed to know all the fault types in the training phase.
In real-world scenarios, this assumption does not always hold.
Therefore, the system is supposed to detect unknown faults that
do not occur during training. A straightforward way for this
issue is to set a certain threshold τ , which is dependent on the
requirement of the target task, and to regard the sample as an
unknown if its maximal prediction score is lower than τ . For
the CTFN structure, this corresponds to the decision on the leaf
node level.

Ωv(x) =

{
0 max

(
P i
v(x̂l)

)
< τ

dv max
(
P i
v(x̂l)

) ≥ τ.
(9)

Considering the top-down prediction process, a local decision
can be obtained on each granularity. In the perspective of de-
tecting the unknown, the CTFN structure can judge whether
the sample belongs to the known fault types or the unknown
type on different granularity. In this scenario, decisions on
coarse granularity can be seen as auxiliary information for leaf-
node decisions, and properly combining such multi-granularity
decisions can be helpful for detecting unknowns. Specifically,
the final decision scoredA is adjusted by attaching an importance
factor to each decision of a certain granularity:dA =

∑Φ
i+1 αid

i,
where Φ is the depth of the structure,

∑
i αi = 1, and αi is the

importance factor of the decision on the i-th granularity.

IV. EXPERIMENTAL STUDY

The ICPS is a network of intelligent and highly connected
industrial components, including a variety of core industrial
software, industrial Internet of Things platform and terminal
equipment, edge computing equipment, industrial artificial in-
telligence applications, the underlying real-time database, etc.
In this paper, the proposed method is utilized for the power
ICPS. Existing datasets usually consist of only several thousand
samples with a few fault categories, while in real industrial
applications, users may encounter dozens of classes of possible
faults. In this regard, a new large-scale dataset is collected,
namely FAult Recognition Of Nuclear power system (FARON),
which contains 362,994 samples from 66 categories. Then, the
effectiveness and superiority of the proposed method are verified
by conducting the large-scale diagnosis task based on this new
dataset and the comparison with six state-of-the-art baseline
diagnosis methods in various experiments of industrial Big
Data analysis, including the normal condition, and long-tailed
condition that often occurs in the real industrial applications.

Fig. 3. Experimental Setup of the Nuclear Power System [30].

A. Data Description

The FARON dataset consists of a large number of encrypted
operational data of nuclear power systems [30]. The nuclear
power system is the energy generation module of a power
plant, which is usually composed of steam generators, turbines,
electric generators, condensers, pumps, valves, and associated
equipment, as shown in Fig. 3. Normal and fault data are
simulated by a nuclear power system simulator, which has 121
sensor-respond outputs for the primary system and the secondary
system. During the data generation process, the nuclear power
plant started from the normal state in each simulation and ran for
2 minutes; then the faults were introduced at a certain point in the
operational process. Thus, the operational data of 65 fault types
were collected by 19.89 h simulation, in which each fault type is
simulated ranging from 10 to 77.7 minutes. To extract the spatial
and temporal domain features, the time-series multi-variable
samples were processed into multiple time segments. As a result,
a two-dimensional m× n matrix can be obtained, where m
represents the length of sampling time and n represents the
number of variables. Concretely, m is set to 20, and n is set
to 121. To obtain normal data, six simulations of different oper-
ational environments were performed. The sampling frequency
is 4 Hz during the simulating process, and this leads to 76,632
samples under health state being collected. In the process of
fault data generation, the nuclear power plant started from a
normal state in each simulation, and then the faults were set
to occur at a certain point in the operational process. To well
describe the operational environments more comprehensively,
failures of most main components of the nuclear power plant
were simulated, including the feed water pump, circulating
pump, condenser, and relevant valves, yielding 65 fault cases
and 286,362 samples in fault data.

B. Experiments on Normal Industrial Big Data Analysis
Task

1) Experimental Details: In this part, the proposed CTFN
learning framework is utilized to analyze the originally collected
dataset for industrial Big Data analysis of the nuclear power
system. For a fair comparison, the corresponding CTFNs of
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TABLE I
STRUCTURE OF IAGNN, CNN, MLP AND DBN

all six flat methods are set to be the same parameters. Several
widely used diagnosis methods are also used to analyze the
same dataset for comparison, including logistic regression (LR),
principal components analysis and linear discriminant analysis
(PCA+LDA), support vector machine (SVM), convolutional
neural network (CNN), k-nearest neighbors (KNN), multilayer
perceptron (MLP), deep belief network (DBN) and interaction-
aware graph neural network (IAGNN). To test the performance
of different methods on unknown detection, samples of four fault
types were randomly removed from the training set and added
to the test set. To minimize the effect of random fault selection,
the results reported are the average of 10 trials.

In terms of unknown detection, since the performance relies
on the threshold, the area under the ROC curve (AUROC) is
leveraged to measure such performance in a threshold-free way.
AUROC considers many possible thresholds and calculates the
area as a comprehensive evaluation. Concretely, for a certain
threshold, the True Positive Rate (TPR) and False Positive Rate
(FPR) can be computed by TP

TP+FN and FP
FP+FN , respectively,

where TP is the true positive; FN is the false negative; FP is
the false positive. By setting the TPR as the vertical axis and the
FPR as the horizontal axis, the ROC curve can be plotted, and the
AUROC can be computed. Following [26], 1000 samples of the
training set are used to choose the parameterαi(i = {1, . . .,Φ})
that can obtain the best AUROC. In terms of computation effi-
ciency, we use the testing time to compare different algorithms.
Concretely, the elapsed time that an algorithm completes the
target task is computed during experiments.
Implementations. The implementations by liblinear [27]

are used for LR and SVM. The cost parameter is set to be 2 in
LR; the components are set to be 45 in PCA+LDA and the bias
is set to be 1 in both LR and SVM. The structures of CNN, MLP,
DBN and IAGNN are designed by following the works in [28],
[29], [30] as shown in Table I. The structures of CNN, MLP
and DBN are designed by following the works in [28], [29],
as shown in Table I. During training, the Adam optimization
algorithm [31] is applied, where the learning rate is set as 1e-3
and other parameters are set by default. The size of a minibatch
and the validation frequency are set to 200 and 30, respectively.
For KNN, the number of nearest neighbors is chosen as 5. For
the corresponding CTFNs, the parameters are the same as the
flat ones for fair comparison. The number of outputs on each
node in CNN, MLP, and DBN are set as the number of child
nodes under the current node. To speed up training, principal
component analysis is utilized to keep 99.5% energy. In the use
of the dataset, 80% of the data is split as the training set and the
rest 20% is used as the test set. Since the fault data are generated

TABLE II
ACCURACY (%, ↑), AUROC(↑), AND TESTING TIME (SECOND, ↓)

COMPARISON BETWEEN LR AND SVM AND THEIR CORRESPONDING
CTFNS (HL VERSIONS)

TABLE III
ACCURACY (%, ↑), AUROC(↑), AND TESTING TIME (SECOND, ↓)

COMPARISON BETWEEN CNN AND KNN AND THEIR CORRESPONDING
CTFNS (HL VERSIONS)

TABLE IV
ACCURACY (%, ↑), AUROC(↑), AND TESTING TIME (SECOND, ↓)

COMPARISON BETWEEN MLP AND DBN AND THEIR CORRESPONDING
CTFNS (HL VERSIONS)

TABLE V
ACCURACY (%, ↑), AUROC(↑), AND TESTING TIME (SECOND, ↓)

COMPARISON BETWEEN PCA+LDA AND IAGNN AND THEIR
CORRESPONDING CTFNS (HL VERSIONS)

in a time sequence, it cannot be shuffled. Finally, all the results
reported are the average of 10 trials.

2) Results and Analyses: Tables II, III, IV and V show the
results of the classification accuracy, unknown detection AU-
ROC, and testing time comparison between the baseline diagno-
sis methods and their corresponding CTFNs. It can be seen that
all of the CTFNs perform better than the flat baseline methods in
terms of accuracy and AUROC. For the seen industrial Big Data
analysis, it can be seen that the industrial Big Data analysis task is
much more difficult than the small-scale ones. The classification

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on August 24,2024 at 16:16:14 UTC from IEEE Xplore.  Restrictions apply. 



366 IEEE TRANSACTIONS ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, VOL. 1, 2023

TABLE VI
EXPLANATIONS OF THE FAULT CATEGORIES UNDER THE SUPERORDINATE

NODE #68 IN FIG. 9

Fig. 4. Data visualization via t-SNE for (a) the original data, (b) the
extracted feature map on node #68, (c) the extracted feature map on
node #70, and (d) the extracted feature map on node #72. CTFN can
divide a difficult problem in a complex space into several simple sub-
problems on concise sub-spaces.

accuracy is generally below 80% for all the methods. The
increasing number of fault categories leads to larger intra-class
differences and smaller inter-class differences, which increases
the difficulty in identifying all the fault categories altogether in
a single-shot diagnosis. The proposed CTFN method learns to
construct the CTFN by grouping similar fault categories into
the same superordinate category, which enlarges the inter-class
difference of the sub-problems on each of the nodes. The data
distribution of the original data and the extracted feature map on
some superordinate nodes of the learned structure are visualized
via t-SNE [32] in Fig. 4. It can be seen that the features of
the proposed CTFN are visually more discriminative than the
baseline methods. Moreover, the proposed CTFN method has
clear advantages over all the flat methods except KNN. This is
because the complex learning problem poses great challenges
to finding the optimal decision boundaries. By contrast, KNN
only takes into account the information of the nearing neighbors,
which alleviates the adverse effects of small inter-class differ-
ences. This might make it stable for large-scale problems, so
the CTFN can only help a little for KNN by producing several
simple sub-problems.

Fig. 5. Area Under ROC curve (AUROC) comparison between differ-
ent methods on unknown fault detection: (a) LR, SVM, and CNN; (b)
KNN, MLP, and DBN.

For detecting unknown faults, as shown in Fig. 5, the CTFN
approach can take advantage of the information of multi-
granularity decisions, and this benefits the task of unknown
detection. Finally, the testing times of the CTFN method are
shorter when using LR and SVM as base classifiers than that of
flat baselines, but are longer when using other neural network-
based models as base classifiers than that of flat baselines. As
mentioned in Section III-C, neural-network-based methods con-
tain a feature extraction process, so corresponding CTFNs suffer
from relatively low efficiency as such a feature extraction process
will be duplicated on all levels. The KNN method requires each
testing sample to compute similarity with all training samples,
and this also makes the HL-KNN inefficient. By contrast, for
other classical classifiers, e.g., LR and SVM, the proposed
methods facilitate the diagnosis efficiency through a top-down
divide-and-conquer diagnosis process.

C. Experiments on Synthetic Long-Tailed Industrial Big
Data

1) Experimental Details: The collected dataset contains
2,000-5,000 samples for 64 fault categories, and this is helpful
in exploring rich features and differences of various faults. In
fact, most fault categories are rarely seen and thus have very few
samples for training, while a small proportion of fault categories
usually take place in operation. This phenomenon is referred to
as long-tailed distribution problem [25], or Pareto’s principle. To
test the performance of various methods in such real industrial
scenarios, the dataset is sampled to simulate the problem of
long-tailed distribution, as shown in Fig. 6.

Implementations. The first 53 fault categories (80% of the
fault categories, following the 80-20 rule in Pareto‘s principle)
are randomly sampled. An unbalanced rate is set to control
the proportion of a certain category: N̂i = Ni × ru, where
Ni is the number of samples in the i-th category, N̂i is the
number of remaining samples in the i-th category, and ru is
the unbalanced rate. Each ru leads to new data with different
degrees of long-tailed distribution. In this way, the classification
accuracy can be computed at each ru, and a curve across all
rus can be obtained. Finally, seven values of ru are selected,
i.e., ru = {0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 0.99}. To eliminate the
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Fig. 6. Long-tailed data distribution. The original dataset is modified
by randomly sampling in 80% fault categories with ru = 0.6.

Fig. 7. Accuracy comparison of (a) LR, SVM, CNN and the corre-
sponding CTFNs, (b) KNN, MLP, DBN and the corresponding CTFNs,
with different rus. The dashed lines in different colors represent the
accuracy of the baseline methods, while the solid lines represent the
accuracy of the corresponding CTFNs.

effect of random sampling, the average results of 10 trials of
random sampling are reported. All the other settings are the
same as Section IV-B.

2) Results and Analyses: The results are shown in Fig. 7.
The accuracies of the flat methods and the corresponding CTFNs
are plotted in dashed lines and solid lines respectively. It can be
seen from the results that the proposed CTFNs outperform all the
corresponding flat methods. Moreover, it can be indicated from
the results that: (1) the accuracy is generally strongly related to
the unbalanced rate, where the high rate would pose an adverse
effect on the performance of the methods; (2) the tolerability to
the unbalancedness varies from different method, among which
CNN and KNN perform better than other methods; (3) CTFNs
perform significantly better than the corresponding flat ones, and
even can build the performance gap across different flat methods,
e.g., the performance of HL-SVM being comparable with that
of LR. It is worth noting that the HL-CNN can even eliminate
the adverse effects of long-tailed distribution in some cases, e.g.,
the curve of HL-CNN with ru from 0.7 to 0.99.

The reasons why CTFNs can deal with the long-tailed distri-
bution problem better may come from two aspects. On one hand,
since the CTFN is learned based on the inter-class similarity,
sub-problems under some of the superordinate categories, such
as node #70 and #72, are balanced. On the other hand, although
data distribution is still unbalanced on other nodes, they come
from fewer categories than the original problem and hence are
relatively easier to handle.

D. Experiments on CTFN Architecture Learning

1) Experimental Details: To construct the CTFN architec-
ture, a commonly used method is hierarchical spectral clustering,
which requires setting two parameters: the number of child
nodes per parent θ and tree depth Φ, then the best structure
can be obtained by exhaustive search on the parameters. In
this paper, a parameter-free hierarchical community detection
method is designed to intelligently build the structure. Therefore,
experiments in this part are conducted to explore and compare
the performance of the proposed parameter-free method and
traditional hierarchical spectral clustering.

Implementations. The range of parameters θ and Φ are
selected by considering all possible values. In this experiment,
the ranges that lead to good performance to report the results are
selected. Finally, we set θ,Φ ∈ {3, 4, 5, 6, 7}. For a fair compar-
ison, the inter-class similarity matrix obtained in Section IV-B
is used for hierarchical spectral clustering with various param-
eters and the proposed parameter-free hierarchical community
detection. Then, the classification accuracy is compared based
on structures built by both methods. Other settings remain the
same as Section IV-B and IV-C.

2) Results on CTFN Architecture Construction Algorithms:
Fig. 8 displays the results of various possible combinations
of parameters θ and Φ, where the dark red bar on location
(8, 8) in (x, y) plane in each sub-figure is the result of the
proposed parameter-free algorithm. It can be seen that the pro-
posed parameter-free algorithm performs the best (with LR and
SVM classifiers), and is close to the best (with other classifiers).
This may result in some interesting conclusions in Fig. 8: (1)
Neither extremely deep nor shallow hierarchies could benefit
the performance of CTFN; (2) Parameter-free methods do not
lose performance in all the scenarios of building the CTFN archi-
tecture. The reason may be that the optimal splits on different
superordinate nodes should not always be identical (the same
θ); (3) The performance varies from different classifiers with
the same parameter combination of θ and Φ, because classifiers
have their own biases on data, e.g., SVM preferring the cases of
clear margins.

3) Analyses on the Learned CTFN Architecture: The
learned CTFN architecture of fault categories (See Fig. 9) can
be regarded as a kind of extracted knowledge and is a possible
way to interpret the algorithm.

Some useful cues can be found to interpret some of the
rationales by analyzing the learned structure. Take the super-
ordinate node #68 as an example. Some fault categories from
the same and similar components are assigned to the same
group. Node #68 mainly includes faults from the circulating
water pump, condenser pump, seawater pump, and main turbine
governor valves. These components serve together to provide
water to the pressurized water reactor for generating steam and
to make the energy cycle [33], so they are highly interconnected.
Nabeshima et al. pointed out that the faults of the turbine
governor valve may lead to changes in steam flow and feed water
flow [34]. Therefore, it is reasonable to have these components
faults from these interactively related components in the same
group.
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Fig. 8. Accuracy of various parameter combinations of CTFN and the
proposed parameter-free hierarchical community detection with (a) LR,
(b) SVM, (c) CNN, (d) KNN, (e) MLP, (f) DBN, (g) PCA+LDA and (h)
IAGNN. Dark red bars at location (8, 8) of (x, y) plane show accuracies
of the parameter-free hierarchical community detection, while other bars
represent the accuracy of different parameter combinations of CTFN.

Moreover, better performance can be obtained by grouping
these fault categories. Fig. 10 visually shows the confusion
matrix of CTFN under node #68 and the same part of the
confusion matrix of flat methods (both using the CNN classifier).
It can be found that the flat methods consider all faults at the same
time and misclassify a large proportion of samples. By contrast,
the proposed CTFNs clearly improve the diagnosis performance
by grouping these fault categories together and identifying
them without interference from other fault categories. Fig. 10
shows the results of industrial Big Data analysis in terms of
the confusion matrix, in which the diagonal elements are the
correct predictions while other positions depict the number of
misclassified samples. To visualize the results, bright colors

Fig. 9. Visualization of the learned CTFN architecture of fault cate-
gories. Detailed explanations of the fault categories under the superor-
dinate node #68 are shown in Table VI.

Fig. 10. Confusion matrix comparison under node #68 of (a) CTFN,
and the same part of (b) flat method (CNN classifier) for fault categories
in Fig. 9.

represent a larger number of samples while dark colors represent
a less number of samples. It can be seen that the proposed method
performs better than the baseline methods, which verifies its
effectiveness.

V. CONCLUSION

In this paper, an industrial Big Data analytical system is pro-
posed for industrial Big Data analysis and condition monitoring
of complex systems. Experimental results illustrated that the pro-
posed Big Data analytical system has clear advantages over other
baseline flat methods. Though the proposed system performs
well on dozens of known industrial Big Data analyses, there
are still many challenges in real engineering that have not been
solved or considered in this paper, such as the data coupling and
analysis problems. We will investigate the intelligent equipment
design or improvement based on the proposed industrial Big
Data analytical system, and look forward to constructing an
integrated and finer ICPS system. In real-world applications,
the proposed method can be trained distributively with popular
techniques such as SPARK to efficiently handle large-scale
tasks. In the future, we will improve the recognition capability
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of new fault classes, thus improving the practicability of the
proposed method in real engineering.
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