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Abstract—Bearing anomaly detection plays a crucial role
in modern industries as most rotating machinery faults are
attributed to faulty bearings. However, acquiring fault samples
in industry is a time-consuming and expensive process. To
address this issue, this article presents an integrated unsupervised
learning method named autoencoder Wasserstein generative
adversarial network (AE-AnoWGAN). AE-AnoWGAN is capable
of detecting abnormal bearings and performing anomaly localiza-
tion without the need for labeled data. In this approach, industrial
data is initially processed using continuous wavelet transform
to convert it into time-frequency representations (TFRs). These
TFRs are then fed into the integrated AE-AnoWGAN for
training. AE-AnoWGAN consists of multiple encoder–decoder
and discriminator pairs, which are randomly paired and trained
using adversarial training. The encoder maps the TFRs to a
latent space, and the pretrained generator acts as the decoder to
generate reconstructed TFRs. During the testing phase, the model
calculates anomaly scores for the input TFRs. Experimental
evaluations were conducted using the PU bearing data set
and IMS bearing data set. Comparative results demonstrate
that the proposed AE-AnoWGAN method outperforms existing
approaches in terms of anomaly detection accuracy. Moreover,
the method exhibits high-anomaly detection efficiency, making it
suitable for real-time monitoring applications. Furthermore, this
method provides practical value by enabling anomaly localization
and bearing degradation estimation of TFRs.

Index Terms—Anomaly detection, deep learning, fault diagno-
sis, Wasserstein generative adversarial network (WGAN).

ACRONYMS AND ABBREVIATIONS

Gd Decoder in autoencoder–discriminator pair.
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Ge Encoder in autoencoder–discriminator pair.
La Adversarial loss.
Ld Discriminative loss.
Lr Reconstruction loss.
S(x) Anomaly score.
x Time-frequency representations (TFRs).
z Latent space representation.
D Discriminators in generative adversarial network

(GAN).
G Generators in generative adversarial network (GAN).

I. INTRODUCTION

RECENTLY, the popularization of Industrial Internet of
Things (IIoT) technology has accelerated the arrival

of the industrial big data era, which means that more and
more industrial data can be recorded and used for data-
driven fault detection [1], [2], [3], [4]. As one of the critical
components in industrial systems, bearings have been widely
used in encompassing motors, wind turbines, gearboxes and
automobiles [5], [6]. Many instances of equipment degradation
or failure can be attributed to bearing failures. Consequently,
the condition monitoring of bearings has emerged as a focal
point of research in recent years [7], [8]. This approach not
only enhances the security of industrial systems but also offers
substantial economic savings.

In recent literature, data-driven fault diagnosis methods,
especially deep learning-based intelligent fault diagnosis meth-
ods, have led to a series of breakthroughs due to its powerful
ability that can directly learns the high-level features from
massive raw data. For now, autoencoders [9], convolutional
neural networks (CNNs) [10], recurrent neural networks
(RNNs) [11], deep adversarial capsule network [12], deep
ensemble capsule network [13], WavCapsNet [14], weight-
shared capsule network [15], et al., have been proposed to
solve the complex diagnosis tasks for rotating machines.
However, the annotation of fault data is a time-consuming and
needs comprehensive domain knowledge. We cannot guarantee
to get enough data under every condition to train a deep
network. Therefore, many research works have been proposed
to solve the few-shot fault diagnosis problem with class-
imbalance data set [16], which can be generally divided into
three aspects: 1) data augmentation; 2) model construction;
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and 3) optimization algorithm. The data augmentation algo-
rithms can enlarge data set and solve the few-shot problem
from data level, which mainly including simulation data
augmentation [17], [18], affine transform, GAN, and so on.
Then, the model construction, including transfer learning [16],
multitask learning [19], continual learning [20], etc., is also
important for class-imbalance data analyze and has shown
great advantages for few-shot fault diagnosis. Third, as for
model optimization, meta-learning is the most widely used
algorithm, which can learn the general parameters of the
network based on historical tasks, thus converge quickly
via a few samples [21]. Additionally, the trained model is
constrained to anomalies that have been predefined and well-
known, making it challenging, if not impossible, to identify
rare and previously unknown faults.

Unsupervised learning serves as an effective tool for identi-
fying rare fault anomalies, offering a solution that does not rely
on labeled data and playing a more and more important role
in industrial big data analysis and other IoT systems. Qi and
Luo [22] reviewed the recent progresses on unsupervised
learning methods for big data. Shang et al. [23] proposed a
feature-based implicit irregularity detection for unsupervised
homecare IoT system. Guo et al. [24] developed a gated
recurrent unit-based Gaussian mixture variational autoencoder
scheme for smart cities IoT systems. Leveraging its ability
to learn high-dimensional distributions of real engineering
data, generative adversarial network (GAN) and adversarial
training frameworks [25] have been successfully employed in
bearing anomaly detection. One notable example is AnoGAN,
which was initially proposed for anomaly detection utilizing
GANs [26]. AnoGAN initially employs a standard GAN
to train on normal samples and learns a mapping from
the latent space z to real samples x: G(z) = z �→ x.
Subsequently, it maps the TFRs [27] to be tested back to
the latent space. The model is trained using normal sam-
ples, allowing it to learn the manifold X of normal sample
TFRs. As the generator is trained to generate normal TFR
samples, when an abnormal TFR needs to be encoded in the
test set, the reconstruction of this abnormal TFR becomes
an outlier. Thus, an abnormality arises between the input
TFR and the reconstructed TFR. While AnoGAN demon-
strates promising anomaly detection performance, it has been
observed to suffer from training instability issues in practical
applications.

To address this problem in AnoGAN, the Wasserstein
distance [28] is proposed, which provides a smoother training
process, thereby enhancing stability. In WGAN, the dis-
criminator quantifies the Wasserstein distance between the
generated data and the real data distribution, without distin-
guishing between real and generated samples. Rather than
using weight clipping as a means to enforce the Lipschitz
constraint, an improved training procedure called WGAN-
GP [29] is introduced. In WGAN-GP, the discriminator outputs
the gradient norm directly, which is constrained by the
discriminator input. Training generative adversarial networks
poses challenges due to the need for optimizing multiple
deep neural networks within a min-max problem. Optimization

often leads to stability issues. Additionally, inadequate regu-
larization of the neural network can result in mode collapse.
Recent research [30] has demonstrated that utilizing multiple
generators and discriminators can effectively address these
challenges. Multiple studies have employed the use of multiple
discriminators to ensure stable gradients for the generator,
thereby enhancing the smoothness of the training process.

Several studies have explored the application of GANs
in anomaly detection, including models, such as AnoGAN,
EGBAD, GANomaly, and Skip-GANomaly. These models
commonly employ an encoder–decoder architecture as the
generator. The generator’s decoder produces synthetic samples
that are either reconstructions of real samples or entirely new
samples. The discriminator’s role is to distinguish between
synthetic samples and normal samples, thereby acquiring the
ability to identify anomalies within the data. The anomaly
score is typically computed by evaluating the sample’s recon-
struction and its internal representation in the discriminator.
These models have demonstrated strong performance across
various detection tasks.

Although AnoGAN and its variants can generate TFRs by
learning the data distribution and successfully detect abnormal
TFRs, they still have the following drawbacks: 1) the training
of these models is prone to instability and mode collapse [31]
and 2) the low-detection efficiency of these models is a
critical limitation in practical anomaly detection for industrial
systems. To address these limitations, this article proposes an
ensemble of auto-encoder Wasserstein GAN(AE-AnoWGAN).
AE-AnoWGAN replaces the reconstruction process by learn-
ing the mapping from TFRs to the latent space using an
autoencoder. This approach significantly enhances efficiency
and stability without compromising effectiveness. In AE-
AnoWGAN, the WGAN is trained using normal samples, an
autoencoder receives feedback from multiple discriminators,
while a discriminator evaluates “training samples” generated
by multiple generators. The anomaly score is computed as
the average of scores obtained from all encoder–decoder
discriminator pairs. The interactive learning of multiple gener-
ators and discriminators enhances the modeling of the normal
data distribution, leading to improved accuracy in anomaly
detection.

The main contributions of the proposed method are sum-
marized as follows.

1) An ensemble of multiple autoencoders and discrimina-
tors is employed in the proposed method to effectively
model the distribution of normal data. The embedding
of generator–discriminator pairs can help the model to
capture data patterns via multiple generators and provide
diversity to synthetic samples, thereby enhancing both
the accuracy of anomaly detection and the stability of
the training process.

2) A discriminator-guided approach is proposed and incor-
porated into AE-AnoWGAN for reconstructing TFRs.
Then, based on the integration of adversarial loss,
reconstruction loss and discrimination loss, an anomaly
score is proposed in this article to quantify the anomalies
of the TFRs.
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II. PROPOSED METHOD

The complete anomaly detection framework involves the
following steps: 1) ensemble adversarial training; 2) training
the ensembled AE-AnoWGAN; and 3) calculating anomaly
scores on the test set to determine the abnormality of the
current bearing.

Before performing adversarial training on WGAN [32],
the TFRs of normal and abnormal data sets are generated
using wavelet transform. During adversarial training, each
generator is paired with each discriminator. The generator is
then evaluated by each discriminator, which receives synthetic
samples from each generator, resulting in an adversarial loss.
The WGAN is adversarially trained using normal TFRs,
which yields a preliminary trained generator and discriminator.
During the training process of AE-AnoWGAN, we establish
an autoencoder–discriminator pair, where the encoder maps
TFRs to the latent space, and the previously trained generator
serves as the decoder to generate reconstructed TFRs. The
discriminator is employed to identify the reconstructed sam-
ples, and the reconstruction loss and discrimination loss are
calculated using multiple autoencoder–discriminator pairs. The
integration of generator–discriminator pairs can help the model
to capture data patterns via multiple generators and provide
diversity to synthetic samples. Multiple generators may also
have a larger joint support S than a single generator. Therefore,
the integrated model can achieve better performance than a
single model. In the training process of AE-AnoWGAN, the
Encoder is trained to generate an inverse mapping from the
image input and then use the Decoder to decode for image
reconstruction. Then, the condition of the image is normal or
abnormal can be determined by evaluating the quality of recon-
struction because the abnormality of the image determines
the quality of the reconstruction. And a discriminator is used
to distinguish normal and abnormal samples from the final
hidden layer. Ultimately, our anomaly score can be calculated
by the integration of adversarial loss, reconstruction loss and
discrimination loss, and the size of these losses determines
the size of the anomaly score. A detailed description of the
method is provided below. Fig. 1 depicts the framework of
AE-AnoWGAN, showcasing its architectural design.

A. Ensemble Adversarial Training

For the training of GAN and encoders, normal time-
frequency diagrams x = xk,n ∈ X are used to convert vibration
signals from industrial data sets into TFRs via wavelet trans-
form [33]. In the formula, xk,n is the TFR of a certain n device
parts in the whole normal data set, and is cut into K parts to
extract an TFR block of size s × s, with k = 1, 2, . . . , K. N
industrial devices are converted to time-frequency and uncut
pictures, with n = 1, 2, . . . , N. During the training step, Only
unlabeled normal TFRs are used.

During the test step, the data set with class M faults is
converted into TFRs as the test set, Then, the proposed method
in the training set is used to obtain a TFR of size s × s.
The normal TFRs are also mixed in the test set to determine
whether the model can correctly distinguish between normal
TFRs and anomaly TFRs.

Fig. 1. Framework of the proposed AE-AnoWGAN for bearing anomaly
detection. The red dotted box corresponds to the WGAN training process,
which involves parameter training for both the generator (G) and discriminator
(D). The blue section represents the training process of AE-AnoWGAN. In
this process, we employ an autoencoder–discriminator pair. The encoder maps
TFRs to a latent space, while the pretrained generator acts as the decoder
to generate reconstructed TFRs. The discriminator is utilized to distinguish
the reconstructed samples. Multiple pairs of autoencoders and discriminators
are employed to calculate the reconstruction loss and identification loss for
anomaly detection .

Learning normal data distribution by generating adversarial
networks. Generally, a GAN consists of two adversarial mod-
ules, a generator G and a discriminator D [34]. The generator
G learns the distribution on the data x by mapping the sample z
to G(z). The sample z is a 1-D vector of uniformly distributed
input noise sampled from the latent space Z , which will be
mapped to a 2-D TFR in the time-frequency space manifold
X that is filled with normal examples.

During the GAN training, the parameters of generator G
and discriminator D are optimized simultaneously [35]. By
sampling the input noise from the latent space z, the generator
trains the TFR of the output data X to be as close as possible
to the normal TFR of the real input in order to trick the
discriminator. Thus, a training distribution TFR that captures
normal changes can be generated via the generator G, and the
fitting degree of the generated TFR to the normal TFR can be
estimated via the discriminator D [36]. The loss function of
WGAN Lwgan is

Lwgan(x) = D(x)− D(Gd(z)). (1)

D(x) represents the discrimination process performed by the
discriminator, Gd(z) represents the generation of samples
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using input z, and Gd(z) serves as the decoder in AE-
AnoWGAN after training.

In the adversarial training phase, each generator is paired
with each discriminator. The discriminators evaluate the gener-
ators by receiving synthetic samples from each generator. The
training objectives of the ensembled WGAN are as follows:

max
I∑

i=1

J∑

j=1

Lij
wgan. (2)

Lij
wgan represents the loss value between each generator–

discriminator pair (i, j), and the discriminator is trained by
maximizing the cumulative adversarial losses. The framework
consists of I generators and J discriminators.

B. Training the Ensembled AE-AnoWGAN

AE-AnoWGAN comprises multiple autoencoder–
discriminator pairs, with the autoencoder serving
as the generator. We define I generators, G =
{(Ge(·;�i), Gd(·;�i)) : i = 1, . . . , I}, and J discriminators
D = {D(·; γj) : j = 1, . . . , J}.

After WGAN training, the generator has learned the map-
ping Gd(z) = z �→ x from the latent space representation z to
the normal TFR x. But GANs cannot automatically generate
an inverse mapping Ge(x) = x �→ z. Therefore, a deep
autoencoder network G is trained in this article to learn the
map function Ge(x) = x �→ z.

1) Reconstruction Loss: During the training process, the
real TFR is initially processed by the trainable encoder Ge to
map it to the corresponding latent encoding z. Subsequently,
the decoder Gd is employed to reconstruct the TFR from the
mapped latent space.

Our objective is to minimize the discrepancy between the
input sample x and its reconstructed counterpart x. To achieve
this, we employ the mean square error (MSE) as the loss
metric, measuring the difference between the two samples.
The reconstructed sample x is represented by Gd(Ge(x)). This
component of the loss is referred to as the reconstruction loss
Lr(x). It quantifies the disparity between the reconstructed
samples and the original samples, which is inherited from the
encoder–decoder architecture

Lr(x) = ‖Gd(Ge(x))− x‖2
m

(3)

where m is the number of the TFR pixels, and ‖ · ‖2 is the
sum of squared pixel-wise residuals.

2) Discriminative Loss: The residuals in the feature space,
which are estimated by the discriminator, play a vital role in
the training objectives of the encoder as they are crucial for
identifying anomalous TFRs. Previous research has indicated
that the hidden vector h, obtained from the final hidden
layer of the discriminator D(·; γ ), is often informative for
discriminating between normal and abnormal samples. Denote
m = fD(x; γ ) as the hidden vector of x in D(·; γ ), then the
discriminative loss Ld(x) based on m is

Ld(x) = K · ‖fD(Gd(Ge(x)))− fD(x)‖2
md

(4)

where md is the dimension of the middle layer features
representation. K is the weight size.

3) Adversarial Loss: During the adversarial training pro-
cess, the adversarial loss remains consistent with that of
the WGAN process. However, in this case, the adversarial
loss La is computed between the encoder–decoder and the
discriminator

La(x) = D(x)− D(Gd(Ge(x))). (5)

4) Ensemble Loss: During AE-AnoWGAN training, we
pair each generator with every discriminator. Each discrimina-
tor then evaluates the generator and receives synthetic samples
generated by each generator. With multiple pairs of generators
and discriminators, both adversarial and discriminative losses
are computed for each generator–discriminator pair. We denote
the loss L(ij)

a and L(ij)
d between each generator–discriminator

pair (i, j)

L(ij)
a = La(x;�i, �i, γj) (6)

L(ij)
d = Ld(x;�i, �i, γj). (7)

Let us denote the reconstruction loss Li
r for a specific

generator i as follows:

Li
r = Lr(x;�i, �i). (8)

Finally, the generator is trained by minimizing the cumu-
lative sum of all losses. The training objectives can be
summarized as follows:

min
I∑

i=1

J∑

j=1

β1L(ij)
a + β2Li

r + β3L(ij)
d . (9)

During each training iteration, we update a single generator–
discriminator pair instead of updating all generators and
discriminators simultaneously. Specifically, we randomly
select one generator and one discriminator, and then compute
the loss using a randomly selected batch of training data.
Algorithm 1 provides an overview of the AE-AnoWGAN
training process.

C. Anomaly Detection

Once the training of AE-AnoWGAN is finished, we develop
an anomaly score to assess the abnormality of input TFRs.
The anomaly score, denoted as S(x) for a new instance x′,
is computed based on the loss function employed during the
training phase

S(x′) = Lr(x′)+ Ld(x′). (10)

The anomaly score of the ensemble A(x′) for a new instance
x′ is the average of anomaly scores from multiple generators
and discriminators

A(x′) = 1

IJ

I∑

i=1

J∑

j=1

S(x′;�i, �i, γj). (11)

Taking the average of anomaly scores helps mitigate the
influence of false positive anomaly detections.

When an anomalous TFR is provided as input, the recon-
structed TFR exhibits significant deviations. Consequently,
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Algorithm 1 AE-AnoWGAN Training
Input: Training set X = {xk,n} with k = 1, . . . , K and n =

1, . . . , N
Output: Trained generators {(Ge(·;�i), Gd(·;�i))}Ii=1 and

discriminators {D(·; γj)}Jj=1
1: Initialize parameters for (�i, �i)

I
i=1 and (γ )J

j=1
2: t← 0
3: while Components do not do
4: converge and t < max_iter
5: for i from 1 to I do
6: for j from 1 to J do
7: Sample a minibatch Xt from X
8: Compute the adversarial loss L(ij)

a

9: Update D(·; γj) : γj ← γj + ∇γjL
(ij)
a

10: L(ij) = β1L(ij)
a + β2Li

r + β3L(ij)
d

11: Update Ge(·;�i) : �i ← �i −∇�iL(ij)

12: Update Gd(·;�i) : �i ← �i −∇�iL(ij)

13: t← t + 1
14: end for
15: end for
16: end while

Algorithm 2 Anomaly Detection

Input: Test set X′ = {x′k,n} with k = 1, . . . , K and n =
1, . . . , N

Input: Trained generators {(Ge(·;�i), Gd(·;�i))}Ii=1 and dis-
criminators {D(·; γj)}Jj=1

Output: Anomaly Score A(x′)
1: for x′ in X′ do
2: for i from 1 to I do
3: for j from 1 to J do
4: Reconstructed value x′r ← Gd(Ge(x′))
5: Compute reconstruction loss Lr(x′)
6: Compute discriminator loss Ld(x′)
7: Compute single anomaly score S(x′)
8: Update A(x′)← A(x′)+ S(x′)
9: end for

10: end for
11: end for

the anomalies yield higher anomaly scores. Generally, the
capability to reconstruct similar TFRs is inversely proportional
to the degree of anomaly. Thus, the absolute value of the pixel
residual, denoted as ȦR(x), is defined as follows for pixel-level
positions:

ȦR(x) = |Gd(Ge(x))− x|. (12)

The anomaly scores and anomaly positioning can be utilized
to detect the degree and location of anomalies in TFRs.
Through the interactive learning of multiple generators and
discriminators, the distribution of normal data can be more
effectively modeled, leading to enhanced accuracy in anomaly
detection. Algorithm 2 outlines the anomaly detection process
and the acquisition of anomaly scores.

III. CASE STUDY

To assess the effectiveness of the proposed anomaly detec-
tion method, we conduct separate analyses on the PU bearing
data set and the IMS bearing data set. The PU bearing data
set is the real vibration signals of prefabricated faults and
natural failure, and the IMS data sets are run-to-failure data
sets, which can illustrate the effectiveness of the proposed
method in real engineering.

To begin with, The original data set is the time-series
vibration signals collected via acceleration sensors. After
the experiments finished, we can get a time-series vibration
vector data set. Then, the data set is transformed from the
time domain to the time-frequency domain using continu-
ous wavelet transform (CWT) [37], which can combine the
information in time domain and frequency domain together,
thus supports the neural networks get more accuracy results.
This transformation enables us to obtain the TFR of both
normal and abnormal bearings under various operating con-
ditions. Subsequently, the WGAN model is trained using
the TFRs of normal bearings to enable the generator to
produce realistic TFRs resembling normal bearings. During the
training process of AE-AnoWGAN, each generator interacts
with each discriminator, receiving feedback from them. The
encoder is utilized to map the TFRs into a latent space,
and the previously trained generator serves as the decoder to
generate reconstructed TFRs. By employing an ensemble of
multiple generators and discriminators, a better modeling of
the distribution of normal data is achieved, leading to improved
anomaly detection.

During the testing phase, inputting samples into the model
yields anomaly scores for each sample, facilitating the assess-
ment of the severity of anomalies. Simultaneously, pixel-level
anomaly localization is performed. In the comparative exper-
iment, several anomaly detection methods are employed to
analyze the identical data set for comparison. These methods
include GANomaly [38], a GAN-based anomaly detection
approach, as well as other methods, such as FastFlow [39],
PADIM [40], STFPM [41], and reverse distillation [42].

The algorithm is implemented by Python based on GPU
NVIDIA RTX 2060 6GB and CPU AMD Ryzen 7 4800H.The
platform is Pytorch1.0. For the WGAN training, the GPU
memory cost is 5722 Mb.

A. Case I—PU Bearings Data Set

1) Data Description: The PU bearing data set used in
this study was provided by Lessmeier [43] for the purpose
of condition monitoring and diagnosis of bearings, which
is contributed by Paderborn University and collected current
signals and vibration signals of rolling bearings under different
conditions, including artificially damaged, naturally damaged,
and healthy state. The artificial damages are manually caused
by manual electric engraving and electric discharge machining
drilling. The data set consists of 32 bearings of type 6203,
which were subjected to various tests. Among them, there are
12 artificially damaged bearings, 14 naturally failed bearings
that have passed accelerated life tests, and 6 healthy bearings.
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Fig. 2. Mechanical setup of the test rig: (1) test motor; (2) measuring shaft;
(3) bearing module; (4) flywheel; and (5) load motor.

Fig. 3. Visualization of vibration signal from PU data set.

These bearings were tested under four different operating
conditions.

For artificially simulated faults, three processing modes
were considered. The bearings with natural failures were
obtained through accelerated run-to-failure tests. Subsequently,
all bearings were mounted on a modular test bench to ensure
uniform testing conditions. During the experiment, the current
signals, vibration signals, and three parameters (radial force,
load torque, and oil temperature) were collected.

Each bearing was affixed onto a standardized modular test
rig to ensure consistent testing conditions. The experimental
setup utilized to gather the PU bearing data set is illustrated
in Fig. 2. The visualization of the vibration signal is shown in
Fig. 3.

2) Data Preprocessing: The wavelet transform was
employed to process the industrial signals, facilitating the
transformation of the signals into time-frequency represen-
tations (TFRs) [44]. The Morlet wavelet was chosen as the
wavelet basis due to its suitability for analyzing nonstationary
signals with both time and frequency localization properties.
Its complex Gaussian shape and adjustable width make it well-
suited for capturing transient features in industrial signals [45].

The scale parameter, also known as the window length, was
set to 64 samples. This choice was based on a tradeoff between
time and frequency resolution. A shorter window provides
better time resolution but sacrifices frequency resolution, while
a longer window increases frequency resolution but reduces
time resolution. The selected scale parameter strikes a balance
between the two, allowing for an adequate representation of
both time and frequency characteristics.

The PU data set incorporates the K001 and KA01 bearing
data sets, representing vibration data from a healthy bearing
and a faulty bearing with artificially induced grooves via elec-
trical discharge machining, respectively. The data is partitioned
into frames with a size of f = 1024. Using the aforementioned

TABLE I
SAMPLES OF THE TWO CASES

TABLE II
PARAMETER SETTINGS IN COMPARATIVE EXPERIMENTS

wavelet transform, TFRs of the preprocessed PU data sets
are obtained, encompassing TFRs of both healthy and faulty
states. Consequently, 3920 TFRs with dimensions of 256×256
pixels are obtained for the healthy state, while 3871 TFRs with
the same dimensions are obtained for the faulty state. To train
the AE-AnoWGAN, 70% of the normal TFRs are utilized as
the training set, while the remaining 30% of healthy TFRs
and all faulty TFRs are randomly designated as the test set
for anomaly detection. The number of total samples, training
samples and test samples are listed in Table I.

3) Experimental Setup: During the WGAN training, a
ResNet is trained with gradient penalty (WGAN-GP), where
the generator and the discriminator were implemented as con-
volutional decoder and encoder, respectively. Each of them is
comprised with four residual blocks. Throughout the process,
the size of filters is set to be 3× 3. In the discriminator, layer
normalization is used. The hyperparameters of WGAN are set
as batch_size = 32, iterations = 100 and learning_rate =
0.0002.

During encoder training, the encoder map is constrained
within (−1σ,+1σ) of the standard normal distribution by
applying a tanh activation function to the encoder output.
The training parameters of the encoder are the same as
those of WGAN. The backbone of FastFlow, PADIM, and
STFPM is Resnet18, and the backbone of Reverse Distillation
is wide_resnet50_2. Other parameter settings are shown in
Table II.

4) WGAN Training: the WGAN is employed to generate
realistic TFRs from a latent space, mapping from the latent
space to the TFR domain. Fig. 4(a) and (b), depict the
generated TFR and the original TFR, respectively. As framed
in yellow, it can be found two main components in the raw
TFR in Fig. 4(b): 1) the 5800-Hz periodic harmonic vibration
component and 2) the harmonic vibration component between
3000 to 4000 Hz, which matches with the knowledge of
healthy bearings. And in the generated TFR in Fig. 4(a),
the two periodic harmonic vibration components have all
been generated well. The structural similarity index (SSIM)
is utilized as a metric to assess the similarity between the
two TFRs. The closer to 1 of SSIM, the closer between the
generated samples and original samples, the better the model
is. The average SSIM value computed for the generated TFR
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Fig. 4. (a) Generated TFR of healthy bearing and (b) raw TFR input of
healthy bearing.

and the original TFR is 0.93, indicating a high degree of
similarity close to 1. This finding suggests that the model
effectively learns a latent representation of the normal TFR,
enabling the generation of realistic TFRs.

5) Encoder Training: After training the mapping from the
real TFR to the latent space and the inverse mapping from
the latent space back to the real TFR, the corresponding latent
encoding for a given query input can be obtained using the
encoder. If the input falls within the range of the training
data, the model can identify visually similar normal TFRs. The
average SSIM value between the reconstructed TFR and the
original TFR is calculated as 0.84 using the proposed method.
This value, close to 1, indicates that the model can accurately
learn a latent representation of the normal TFR for effective
reconstruction.

6) Ensembled Training: During the training process of
AE-AnoWGAN, we adopt a selective approach where only
one generator–discriminator pair is updated in each training
iteration, instead of updating all generators and discriminators
simultaneously. Specifically, a generator and a discriminator
are randomly chosen, and the loss is computed using random
batches of training data. It is important to note that AE-
AnoWGAN does not require IJ times the training time of the
basic model; in fact, it is significantly faster. This efficiency
is achieved by updating the generator once every I iterations
on average, with a similar approach for the discriminator.
In practical implementations, using small values of I and J
(e.g., I = J = 3) often leads to substantial performance
improvements.

7) Comparison Experiment: In order to demonstrate the
effectiveness of the proposed method, various anomaly detec-
tion methods are employed to analyze the same data set for
comparison. These include the GAN-based anomaly detection
method, GANomaly, as well as other methods, such as
FastFlow, PADIM, STFPM, and reverse distillation, which are
integrated with the anomalib library [46]. The corresponding
ROC curve and AUC value of the analysis results are presented
in Fig. 5.

Notably, the AUC value achieved by AE-AnoWGAN on
the PU bearing data set reaches 0.98, surpassing other

Fig. 5. ROC curve and AUC value of the analyzed results for the PU data set
are presented. It is evident that AE-AnoWGAN exhibits the highest accuracy
rate among the methods evaluated.

TABLE III
TIME-CONSUMING COMPARISON OF ANOMALY DETECTION METHODS

state-of-the-art methods for bearing anomaly detection. The
exceptional performance can be attributed to the advanced
integrated GAN framework and the sophisticated reconstruc-
tion process facilitated by the Encoder. These components
significantly enhance the accuracy of anomaly detection com-
pared to other methods.

Although these anomaly detection methods exhibit good
performance, their computational efficiency in practical appli-
cations is low. In contrast, the AE-AnoWGAN technology
significantly enhances speed by replacing the iterative pro-
cess with a learning mapping from the image to the latent
space. Table III presents the time-consuming comparison
results of different anomaly detection methods using the
RTX3090 graphics card, based on the evaluation of 4899
TFRs in the test set. Remarkably, compared to the best
performing anomaly detection method, Reverse Distillation,
AE-AnoWGAN achieves a reduction in running time of
approximately 90%. This improvement is critical and highly
valuable in industrial settings that demand real-time anomaly
detection capabilities.

8) Anomalies Localization: Once AE-AnoWGAN are
trained, the effectiveness of the proposed method for anomaly
localization is verified by analyzing the test data set. The
TFRs in the test set are used as inputs. Subsequently, the
model generates a reconstructed TFR representing the normal
signals, enabling accurate pixel-level localization of anomalies
by comparing the two TFRs.

As shown in Fig. 6, the TFR enclosed in the red frame
represents the abnormal input, the TFR enclosed in the
yellow frame represents the generated TFR, and the TFR

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on August 24,2024 at 16:19:17 UTC from IEEE Xplore.  Restrictions apply. 



22876 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 13, 1 JULY 2024

Fig. 6. Pixel-level anomaly localization of (a) abnormal input TFR and
(b) normal input TFR. The TFR enclosed in the red, yellow, and blue frames
represents the input abnormal TFR, the generated TFR, and the result of
anomaly location, respectively. This approach enables the precise localization
of anomalies at the pixel level.

enclosed in the blue frame illustrates the result of anomaly
localization. The red portion within the blue frame indicates
the location mark of the anomaly. Fig. 6(a), displays the
result of the abnormal input TFR, while Fig. 6(b) shows the
outcome of the normal input TFR. Notably, the anomaly
location in the normal TFR is almost negligible, whereas
the anomaly location in the abnormal TFR is significantly
more prominent. This observation demonstrates the model’s
capability to distinguish between normal and abnormal TFRs,
thereby effectively implementing anomaly localization.

9) Differentiate Abnormalities: Initially, the test set of the
PU bearing data set is utilized as input to generate the TFRs.
Subsequently, the proposed method is employed to calculate
the anomaly scores for all TFRs within the test set. The test
set is divided into two parts for further analysis. The first
half is used to establish the threshold for anomaly scores. In
the second half, any TFRs with anomaly scores surpassing
the threshold are classified as anomalous. Fig. 7 provides a
visual representation of the partitioning between abnormal and
normal TFRs.

Fig. 7. Anomaly scores of normal and abnormal TFRs are depicted in
the graph. The threshold of the anomaly score is indicated by a dotted line.
TFR samples with anomaly scores exceeding the threshold are classified as
abnormal.

Fig. 8. (a) Test rig of the IMS bearing data set. (b) Structural diagram of
the IMS test bench, including the motor, four bearings, accelerometers, radial
Load, and thermocouple.

B. Case II—IMS Bearings Data Set

1) Data Description: The experimental data set in Case II
is run-to-failure data set and was generated from Prognostics
Center of Excellence through prognostic data repository con-
tributed by the intelligent maintenance system (IMS), which
is called the IMS bearing data set. The IMS bearing data set
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Fig. 9. Visualization of vibration signal from IMS data set.

Fig. 10. ROC curve and AUC value of the analyzed results for the IMS
data set are presented. It is evident that AE-AnoWGAN exhibits the highest
accuracy rate among the methods evaluated.

was collected on an endurance test rig of the University of
Cincinnati and was released in 2014 [47]. The experimental
platform and the structural diagram of the IMS test bench are
shown in Fig. 8, which has the following characteristics: 1) 4
double row bearings of type Rexnord ZA-2115; 2) stationary
speed of 2000 rpm; 3) 6000 lbs load that applied onto
the shaft and bearing; and 4) PCB 253B33 high-sensitivity
accelerometers.

The four bearings are installed on the same shaft and are
forcibly lubricated by a circulating system to regulate flow and
temperature. The IMS data set includes the full life cycle data
of these bearings. The visualization of the vibration signal is
shown in Fig. 9. An AC motor and a friction belt are installed
to keep the speed constant.

2) Data Preprocessing: The wavelet transform parameters
in this study are aligned with the experimental settings of
case I. Specifically, the signals from bearing 1 in both data set
1 and data set 2 are utilized. Bearing 1 in data set 1 represents
a healthy state, while the outer ring of bearing 1 in data set
2 is intentionally damaged. The sampling frequency is set to
20 kHz, and each sampling has a duration of 1 s. Subsequently,
the signal is divided into frames with a size of f = 1024.
By applying the wavelet transform, the TFRs of the data set
are obtained, encompassing both healthy and faulty data. In
total, we obtain 4291 TFRs with a resolution of 256 × 256
representing the healthy state, and 1954 TFRs with the same
resolution representing the inner ring fault state. The division
between the training set and test set follows the same approach
as the PU data set, as listed in Table I.

Fig. 11. As the IMS bearing data undergoes degradation, the anomaly score
generated by the model continues to rise.

3) Anomaly Detection Accuracy Comparison: The exper-
imental setup for the comparative experiment remains
consistent with Case I. The corresponding ROC curve and
AUC value of the IMS data set are presented in Fig. 10.
Remarkably, AE-AnoWGAN achieved an AUC value of 0.92
on the IMS bearing data set, surpassing the state-of-the-art
anomaly detection methods used for comparison.

4) Degradation Estimation: The proposed method utilizes
the test set as input for degradation estimation. The TFRs are
organized and analyzed in chronological order, and their cor-
responding anomaly scores are depicted in Fig. 11. Notably,
the anomaly scores exhibit a clear upward trend, aligning
with the continuous degradation pattern observed in bearing
1 throughout its entire lifespan. This observation indirectly
demonstrates the sensitivity of the proposed method in detect-
ing the degradation state of the operational bearing.

IV. CONCLUSION

This article presents AE-AnoWGAN, a novel anomaly
detection method that combines autoencoders and integrated
Wasserstein generative adversarial networks (WGANs). The
proposed approach leverages TFRs of normal signals to train
the WGAN and associated encoders, enabling the mapping of
TFRs to a latent space for effective anomaly detection.

During the training process of AE-AnoWGAN, an
autoencoder–discriminator pair is designed. The encoder maps
TFRs to the latent space, while the pretrained generator serves
as the decoder to generate reconstructed TFRs. Comparative
evaluations demonstrate that our method significantly out-
performs state-of-the-art approaches in terms of anomaly
detection performance.

Furthermore, we conduct analyses on two distinct data
sets. For the PU data set, our method exhibits excellent
anomaly detection capabilities, accurately pinpointing pixel-
level anomalies. In the case of the IMS degraded bearing data
set, the trend of the anomaly scores aligns with the degradation
patterns observed in the bearings. This correlation indirectly
verifies the sensitivity and high accuracy of our anomaly
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scores, offering a promising tool for bearing degradation
estimation.

To summarize, Generative model is a practical solution to
address the few-shot problem, which is a common problem in
industrial applications because the industrial systems usually
work under health condition and the anomaly data set is
lacking. While the training of the proposed method in this
article do not need anomaly data set, which show great advan-
tages in real engineering. In addition, our proposed method
demonstrates exceptional sensitivity in detecting anomalies in
abnormal bearings and effectively locates pixel-level anoma-
lies in TFRs. Moreover, it achieves high-detection efficiency,
making it suitable for real-time applications in industrial
scenarios.
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