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A B S T R A C T

With the development of industry and manufacturing, the mechanical structures of equipment have become
intricate and complex. Due to the interaction between components, once a failure occurs, it will propagate
through the industrial processes, resulting in multiple sensor anomalies. Identifying the root causes of faults
and eliminating interference from irrelevant sensor signals are critical issues in enhancing the stability and
reliability of intelligent fault diagnosis. The components of industrial processes and their interactions can be
represented by a structural attribute graph. The causal subgraph formed by fault signals determines the fault
mode, while irrelevant sensor signals constitute a non-causal subgraph. The structure of non-causal subgraphs
is relatively simple, and graph neural networks tend to use this part as a shortcut for prediction, leading
to a significant decrease in prediction accuracy. To address this issue, a causal intervention graph neural
network (CIGNN) framework is proposed. First, the sensor signals are constructed into structural attribute
graphs using an attention mechanism. Due to causal and confounding features are highly coupled in graphs,
explicitly decoupling them is almost impossible. Then, we design an instrumental variable to implement
causal intervention to mitigate the confounding effect. Experimental results on two complex industrial datasets
demonstrate the reliability and effectiveness of the proposed method in fault diagnosis.
1. Introduction

Fault diagnosis is an essential element of prognostics and health
management, which is crucial for the safe and reliable operation of
complex industrial systems and extending the lifespan of machines
[1–3]. Compared to traditional algorithms, deep learning-based meth-
ods can adaptively extract features from vibration signals through
model training, significantly enhancing diagnosis efficiency and accu-
racy [4]. Various deep learning models have been applied in fault di-
agnosis, including convolutional neural networks [5], recurrent neural
networks [6,7], and auto-encoder [8].

Multi-source heterogeneous data provides comprehensive equip-
ment information, enhancing the accuracy and reliability of fault di-
agnosis. However, the effective integration and alignment of such data
remains a persistent challenge. Miao et al. proposed a deep feature
interaction network for mechanical fault diagnosis, aiming to achieve
adaptive feature fusion of multi-source heterogeneous data [9]. Class
imbalance caused by the lack of data information is a common problem
in data-driven methods. Tian et al. proposed a weighted modified
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conditional variational autoencoder as a data augmentation technique
to solve this issue [10]. Su et al. fused prior knowledge with key
health information extracted from raw monitoring data, enhancing the
interpretability and robustness of intelligent fault diagnosis [11].

These methods mostly use data from Euclidean space, ignoring
the topological structure of complex industrial processes and the in-
teractions between components. Industrial components and their re-
lationships can be represented as a structural attribute graph [12].
Graph Neural Networks (GNN) exploit inductive biases related to func-
tional dependencies and non-Euclidean representations to effectively
model and analyze graph data [13,14], demonstrating outstanding
performance in fault diagnosis [15–17].

Fault diagnosis is a classification task, and GNN-based fault diagno-
sis is a graph classification task [12]. Graph classification is typically
determined by its causal substructures rather than the entire graph.
For instance, the properties of chemical molecules depend on chemi-
cal bonds and functional groups, rather than non-causal substructures
like ion pairs or hydrogen bonds [18]. The placement of sensors is
determined by the functional causal relationships among industrial
vailable online 9 July 2024
951-8320/© 2024 Elsevier Ltd. All rights are reserved, including those for text and

https://doi.org/10.1016/j.ress.2024.110328
data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/ress
https://www.elsevier.com/locate/ress
mailto:Ande.lin1988@gmail.com
https://doi.org/10.1016/j.ress.2024.110328
https://doi.org/10.1016/j.ress.2024.110328
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2024.110328&domain=pdf


Reliability Engineering and System Safety 251 (2024) 110328R. Liu et al.
Acronyms and Abbreviations

G Structural Attribute Graph
𝐺′ Causal Intervention Graph
V Node Set
E Edge Set
A Adjacency Matrix
X Node Features
𝐗𝑒 Edge Attributes
S Structure Information of Graph
Y Fault Mode
C Causal Variable
B Confounding Variable
Z Instrumental Variable
𝐶 Fault Diagnosis Loss
𝐼𝑉 Causal Intervention Loss
𝑅 Node Feature Reconstruction Loss
𝑇𝑂𝑇𝐴𝐿 Total Loss of Causal Intervention Graph Neural

Network Model
SCM Structural Causal Model
TFF Three-phase Flow Facility
NPS Nuclear Power System
CIGNN Causal Intervention Graph Neural Network
KNN K-Nearest Neighbor Classification
GAT Graph Attention Networks
IAGNN Interaction-Aware Graph Neural Networks
PKT-MCNN Progressive Knowledge Transfer-based Multitask

Convolutional Neural Network
ROC Receiver Operating Characteristic
t-SNE t-distributed Stochastic Neighborhood Embed-

ding

equipment, structures, and components. Once a failure occurs, it prop-
agates through the industrial system [19,20], affecting the normal
operation of other components and causing multiple sensors to emit ab-
normal signals [21]. These anomalous sensor signals constitute causal
subgraphs of the structural attribute graph that determine the fail-
ure modes, while the other sensor signals constitute the non-causal
subgraphs. Due to the non-causal subgraph has a simpler structure,
GNN tends to use this part as a shortcut for prediction, resulting in
a significant decrease in prediction accuracy [22]. Therefore, GNN-
based fault diagnosis methods need to address the interference of the
non-causal subgraphs.

Correlation is particularly important for process monitoring and
fault diagnosis as it reveals predictive relationships that can be used in
practice. However, correlation analysis can only assess the correlation
of data and fails to reveal the causal relationships inherent in industrial
processes. Causal learning analyzes the deterministic relationships in
the prediction based on causal theory, which is rapidly developing in
image recognition [23], natural language processing [24], and out-
of-distribution (OOD) [25]. Fault diagnosis based on causal learning
is also becoming a research hotspot. Li et al. proposed a causal con-
sistency network to address data bias caused by changes in machine
working conditions [26]. Sensors are susceptible to measurement noise
and process noise, which constrains the capability of data-driven meth-
ods to perform causal analysis. Wang et al. proposed causal-trivial
attention graph neural network based on the backdoor adjustment
formula to mitigate noise interference [27]. Zhang et al. proposed
an anti-causal learning approach to estimate transfer effects between
source and target domains thereby improving the cross-domain adap-
2

tation of the model [28]. However, these methods primarily address
uncertainties arising from data bias, noise, and domain variation, with-
out further analyzing the causal relationships between sensor signals
and fault.

To address this problem, GNN-based fault diagnosis needs to face
two challenges: (1) Considering that non-causal subgraphs are more
likely to be learned by GNN and thus interfere with prediction, identi-
fying causal and confounding features in graph is the first challenge to
be addressed. Sensor signals that constitute causal subgraphs are causal
features, while irrelevant sensor signals are considered as confounding
features. (2) Causal and confounding features are highly coupled in
graph, making it a challenge to disentangle them. Instrumental variable
provide a causal intervention method that eliminate spurious corre-
lations between non-causal subgraphs and fault without the need for
direct observation of the confounding features.

Based on the above analysis, we propose an intelligent fault di-
agnosis method based on causal intervention graph neural network
(CIGNN). Specifically, we analyze the causality in GNN-based fault
diagnosis process based on the causal theory, and identify irrelevant
sensor signals as confounding features. Given the difficulty that con-
founding features cannot be directly observed, we design an instrumen-
tal variable to mitigate the confounding effect. The contributions are as
follows.

(1) This study formulates fault diagnosis in complex industrial pro-
cesses as a graph classification task. The causality between sensor
signals and faults in GNN-based fault diagnosis is analyzed based
on causal theory, and a CIGNN fault diagnosis framework is
proposed.

(2) A graph construction module is proposed that uses an attention
mechanism to construct structural attribute graphs based on sen-
sor signals to initially learn the topology and interactions between
components.

(3) An instrumental variable is designed to implement causal inter-
vention to enhances model’s ability to extract causal features,
thereby mitigating confounding effects caused by confounding
features.

(4) Extensive experiments conducted on two complex industrial pro-
cesses data. Experimental results and analysis demonstrate the
superiority of CIGNN compared to state-of-art methods, offering
a viable direction for developing models with enhanced inter-
pretability and robustness.

The rest of the article is organized as follows. Section 2 first intro-
duces background and problem formulation, and then elaborates on the
construction and details of CIGNN . In Section 3, the effectiveness of
the proposed method is validated on two complex industrial process
datasets. Finally, Section 4 concludes this article.

2. Causal Intervention Graph Neural Network

In this study, CIGNN is developed to address the confounding effects
caused by irrelevant features in fault diagnosis. As depicted in Fig. 1,
the framework comprises two parts: (1) Constructing industrial process
sensor signals as graph data through an attention mechanism. (2)
Designing an instrumental variable to perform causal intervention on
the input graphs to obtain causal intervention graphs.

2.1. GNN-based fault diagnosis

In GNN-based fault diagnosis, each sensor is considered a node, and
the correlations between them are viewed as edges. Thus, the industrial
process components and their relationships can be represented as a
graph [29]. A simple graph can be defined as 𝐺 = 𝐺(𝑉 ,𝐸). where V and
E are the sets of nodes and edges, respectively. Node 𝑣 ∈ 𝑉 , and 𝑒 ∈ 𝐸
𝑖 𝑖𝑗
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Fig. 1. The overview of the Causal Intervention Graph Neural Network framework. (1) The multi-sensor signals are sliced and each segment is used as a feature input to a
node, using the attention mechanism to construct input graph. (2) The input graph is subjected to causal intervention learning, including instrumental variable construction and
intervention implementation, to obtain a causal intervention graph. (3) Evaluating the causal intervention effect and utilizing the causal intervention graph for fault diagnosis.
Fig. 2. The architecture for GNN-based fault diagnosis.

donates an edge between 𝑣𝑖 and 𝑣𝑗 . In general, to describe the topology
of a graph using an adjacency matrix 𝐀 ∈ 𝑁×𝑁 , where 𝑁 = |𝑉 |,
indicating the number of nodes. 𝐀𝑖𝑗 stands for an edge link between
nodes 𝑣𝑖 and 𝑣𝑗 . 𝐗 ∈ R𝑛×𝑑𝑛 and 𝐗𝑒 ∈ R𝑐×𝑑𝑐 denote node features and
edge attributes, respectively. The GNN-based fault diagnosis is a graph
classification task where given a set of graphs {𝐺1, 𝐺2,… , 𝐺𝑁} ∈  to
identify fault types {𝑦1, 𝑦2,… , 𝑦𝑁} ∈ 𝑌 .

A typical architecture for graph-level fault diagnosis is shown as
Fig. 2. In this architecture, input graphs are constructed using three
general methods, i.e., KNNGraph, RadiusGraph, and PathGraph. A
GConv layer follows by a graph pooling layer to coarsen the input
graphs into subgraphs, which reduces the dimensionality of the input
graphs and speeds up the computation. After that, a readout layer
collapses the node embedding of the sub-graphs into a graph repre-
sentation by using the sum/max/mean operation. Finally, the learned
graph representation is inputted to the FC layer for realizing graph-level
fault diagnosis.

2.2. Structural Attribute Graph Construction

Inspired by the interpretability of the attention mechanism and
insights from related work [30], we propose an automatic graph con-
struction method to capture the interdependencies among sensors in
complex industrial processes. If two segments of sensor signals exhibit
significant correlation, they should be linked when constructing the
structural attribute graph. The graph construction process is shown as
Fig. 3.
3

Graph attention networks (GAT) [31] improves neighbor aggrega-
tion by automatically learning the attention coefficients of neighbor-
ing nodes. Considering a graph 𝐺(𝑉 ,𝐸), the attention coefficient of
𝑒𝑑𝑔𝑒(𝑖, 𝑗) is:

𝑒𝑖𝑗 = LeakyReLU
(

�⃗�T
[

𝐖ℎ⃗𝑖 ∥ 𝐖ℎ⃗𝑗
])

, ∀(𝑖, 𝑗) ∈ 𝐸 (1)

where ℎ⃗𝑖 and ℎ⃗𝑗 are the features of nodes 𝑣𝑖 and 𝑣𝑗 , respectively. 𝐖 is an
attention vector used for node features embedding, while �⃗� is a weight
matrix used for calculating the correlation between two embeddings.
To facilitate calculation and comparison, the attention coefficients are
normalized using the softmax function:

𝛼𝑖𝑗 = sof tmax
(

𝑒𝑖𝑗
)

=
exp

(

𝑒𝑖𝑗
)

∑

𝑘∈𝑁𝑖
exp

(

𝑒𝑖𝑘
) (2)

where 𝑁𝑖 = {𝑘 ∈ 𝑁 ∶ (𝑖, 𝑘) ∈ 𝐸}∪{𝑖} is the self-containing neighboring
set of node 𝑉𝑖. The new feature ℎ⃗′𝑖 of node 𝑉𝑖 can be aggregated by:

ℎ⃗′𝑖 = 𝜎(
∑

𝑗∈𝑁𝑖

𝛼𝑖𝑗𝐖ℎ⃗𝑗 ) (3)

where 𝜎(⋅) is ReLU activation function.
The structural attribute of graphs is related to fault modes, where

strong influences should be represented as edges. Therefore, we sort all
𝛼𝑖𝑗 select the top 𝐷 ×𝑁 scores to construct the edge set 𝐸, where 𝐷 is
used to regulate the degree of each node. Simultaneously, the structural
information 𝑆 of the sensor association graph 𝐺(𝑉 ,𝐸) can be derived
intuitively.

According to the study by [30], reducing the receptive field of
the attention mechanism results in a stronger sense of dependency.
Following this principle, we initially use the k-nearest neighbors [32]
algorithm to cluster all industrial process sensors into 𝐾 =

√

𝑁
groups. Subsequently, the aforementioned method is used to calculate
edge attributes between nodes within each group. Finally, the same
procedure is performed on the 𝐾 center nodes to construct the complete
structural attribute graph 𝐺.

2.3. Causal view in GNN-based fault diagnosis

We analyze the causal relationships between sensor signals and fault
in complex industrial processes to analyze the identify the causality
of GNN-based fault diagnosis. A structural causal model (SCM) [33] is
constructed by examining causal relationships among seven variables:
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Fig. 3. Structural Attribute Graph Construction process.
Fig. 4. (a) SCM of GNN-based fault diagnosis, (b) Causal intervention for SCM through
instrumental variable.

causal variable C, confounding variable B, nodes features X , instrumen-
tal variable Z , structure information S, graph data G, and fault mode
Y . The SCM is illustrated in Fig. 4.

∙ C→ X←B. Node features X are generated from two highly coupled
latent variables: the causal variable C, which represents sensor signals
determining the fault mode, and the confounding variable B, which
represents irrelevant sensor signals.

∙ X→ S←Z . S represents the structural information obtained from
node features and instrumental variable. S is an adjacency matrix, de-
scribing the graph structure and reflects the interrelationships between
sensors.

∙ X⤏Z . The instrumental variable Z is randomly generated based
on the characteristics spatial of X .

∙ X→ 𝑮′ ←Z . Causal intervention is performed on the input graph
to obtain a causal graph.

∙ G→Y . GNN-based fault diagnosis is to predict the properties of the
input graphs. The classifier will make prediction Y based on the graph
G.

Based on the SCM, it is obvious total effects between X and Y
denoted as 𝑃 (𝑌 |𝑋) is different from causal effects of X→Y , donated
as 𝑃 (𝑌 |𝑑𝑜(𝑋 = 𝑥)). Causal effects only involve the direct path from X
to Y , while total effects involve all paths connecting X and Y . Thus,
irrelevant sensor signals act as error terms to obscure causality.

2.4. Instrument variable for causal intervention

To bridge the gap between total effects and causal effects, we
need to adjust potential confounding variable B. Causal intervention
is a viable approach [34]. There are four causal interventions: front-
door adjustment, back-door adjustment, randomized controlled trial,
and instrumental variable estimation. Additional observable variable is
needed for both front-door and back-door adjustments, while in com-
plex industrial processes where fault and noise signals are highly cou-
pled, confounding variables cannot be directly observed. Randomized
controlled trial are dynamic and uncertain. Instead of directly observ-
ing confounding factors, we use instrumental variable Z to eliminate
spurious correlations.
4

Instrumental variable Z must fulfill two requirements: (1) The
influence of error terms on Y is independent of X , and Z is independent
of error terms. (2) Z is strongly correlated with X . In other words, all
correlations between Z and Y require X as a mediator.

Based on the above analysis, we implement a two stages approach
to construct instrumental variable [35]: In the first stage, a coefficient 𝛼
is obtained by regression estimation of X and Z , denoted as 𝐶𝑜𝑣(𝑋,𝑍).
In the first stage, the expression for Z is replaced with an expression
including Y , and then regress Y on Z , denoted as 𝐶𝑜𝑣(𝑌 ,𝑍). Due to
the restriction in the definition of Z , there is confounding bias between
Y and Z .

𝑋 = 𝛼𝑍 + 𝜀𝑋 ; 𝑌 = 𝜔𝑋 + 𝜀𝑌 (4)

where 𝜀𝑋 and 𝜀𝑌 are error terms including confounding variable B.
Following the adjustments, the effect of X on Y is asymptotic unbiased.

𝜔 =
1
𝑛
∑𝑛

𝑖=1
(

𝑧𝑖 − �̄�
) (

𝑦𝑖 − �̄�
)

1
𝑛
∑𝑛

𝑖=1
(

𝑧𝑖 − �̄�
) (

𝑥𝑖 − �̄�
)

=
Cov(𝑍, 𝑌 )
Cov(𝑍,𝑋)

(5)

2.5. Causal intervention learning

2.5.1. Instrumental variable generation
The limitations of instrumental variable can be summarized in two

points: (1) the instrumental variable Z does not affect the prediction
through any other path than X , (2) the instrumental variable Z affects
the characteristics X . Based on these two basic points, and inspired by
the work on data augmentation [36], we choose random perturbations
as instrumental variable. Specifically, the instrumental variable Z is
randomly generated from the characteristics of nodes X . It satisfies well
the requirements of instrumental variables: (1) Stochastic perturbations
clearly have no independent effect on the prediction, (2) Stochastic
perturbation alter the node characteristics and structural information
of the graph, thereby affecting the prediction results.

The first step of instrumental variable generation is to establish a
causal relationship between Z and X , denoted as Z→ X . To enhance
the comprehensiveness of the information, we align the one-hot label
Y with X by a graph attention layer and subsequently concatenate them
to get new the X . The instrumental variable Z is then generated from X
and Y by an encoder, which contains a multi-layer perceptions (MLP)
and a pair of graph attention layer. Specifically, we firstly utilize MLP
to derive the mean 𝜇 and standard deviation 𝜎 of the latent space for
the intervention variables.

𝑋𝑎𝑡𝑡 = 𝐺𝐴𝑇 (𝑋, 𝑌 )

𝜇, 𝜎 = encoder(𝑋𝑎𝑡𝑡, 𝑌 )
(6)

Instrumental variable Z is a random matrix that obeys a normal
distribution with mean 𝜇 and standard deviation 𝜎.
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2.5.2. Causal intervention
𝑋 and 𝑍 are each spliced after one layer of the graph attention

etwork to obtain the reconstruction 𝑋𝑟𝑒𝑐𝑜𝑛.

𝑍𝑎𝑡𝑡 = 𝐺𝐴𝑇 (𝑍, 𝑌 )

𝑟𝑒𝑐𝑜𝑛 = 𝐺𝐴𝑇 (𝑋𝑎𝑡𝑡, 𝑍𝑎𝑡𝑡)

𝑟𝑒𝑐𝑜𝑛 = 𝜎(𝑓 (𝑋𝑟𝑒𝑐𝑜𝑛))

(7)

here 𝜎(⋅) is sigmoid activation function, and 𝑓 (⋅) is a liner layer. We
select binary cross-entropy (BCE) function to compute the reconstruc-
tion loss:

𝑅 = 𝑓𝐵𝐶𝐸 (𝑋,𝑋𝑟𝑒𝑐𝑜𝑛) (8)

The GNN-based fault diagnosis is a classification task, as detailed
in Section 1. Given a set of graphs {𝐺1, 𝐺2,… , 𝐺𝑁} ∈  with 𝑀 fault
types, we use negative log-likelihood (NLL) function to compute the
classification loss.

𝐶 = −
𝑁
∑

𝑖=1

𝑀
∑

𝑗=1
𝑦𝑗 log 𝑞𝑗 (𝑤|𝐺𝑖) (9)

𝑤 are the hyper-parameters of the model, 𝑦𝑗 is the ground-truth label,
and 𝑞𝑗 represents the probability of belonging to the fault type 𝑗.

It is necessary to note that the model cannot completely ignore the
raw data, which is incompatible with standard fault diagnosis process.
We set the hyperparameters 𝜆1 and 𝜆2 to achieve equilibrium and
combine the reconstruction loss 𝑅, the causal intervention loss 𝐼𝑉 ,
and the fault diagnosis loss 𝐶 . The total loss of CIGNN is denoted as
𝑇𝑂𝑇𝐴𝐿, and the detailed implementation of CIGNN in Algorithm 1.

𝑇𝑂𝑇𝐴𝐿 = 𝐶 + 𝜆1𝐼𝑉 + 𝜆2𝑅 (10)

Algorithm 1 CIGNN

Input: The multiple sensor signals 𝐗 ∈ R𝑛×𝑑𝑛 , hyperparameters 𝜆1 and
𝜆2

Output: The parameters of the trained model.
1: Initialize the node features, 𝐇(0) ← 𝐗;
2: Cluster all nodes 𝑉 into 𝐾 groups, 𝐾 =

√

𝑁,𝑁 = |𝑉 |;
3: Compute attention coefficient 𝑒𝑖𝑗 of node 𝑣𝑖 and 𝑣𝑗 ← Eq. 3;
4: Compute attention coefficient 𝑒𝑘1 ,𝑘2 between central nodes;
5: Obtain input graph 𝐺 with node feature 𝑥𝑖 and adjacency matrix

𝐴𝑖 = {𝑒11, 𝑒12, ..., 𝑒𝑛𝑛}
6: for N input graphs {𝐺𝑖 = (𝐴𝑖, 𝑋𝑖)}𝑁𝑖=1 do
7: compute mean 𝜇 and standard deviation 𝜎 ← Eq.6
8: instrumental variable Z = 𝜇 + 𝜎 × (0, 1)
9: reconstruction of node feature 𝑋𝑟𝑒𝑐𝑜𝑛 ← Eq.7

10: compute reconstruction loss 𝑅 ← Eq.8
11: compute proportionality coefficient 𝛼 ← Eq.9
12: compute instrumental variable estimation loss 𝐼𝑉 ← Eq.10
13: compute fault diagnosis loss 𝐶 ← Eq.11
14: total loss 𝑇𝑂𝑇𝐴𝐿 = 𝐶 + 𝜆1𝐼𝑉 + 𝜆2𝑅
15: end for

For a specific stochastic perturbation 𝑧𝑖, we have 𝑧𝑖 = 𝑓 (𝑥, 𝑧𝑖) ≈
𝑖 ⋅ 𝑥. 𝛼 is a self-learning parameter, which is used to represent the
elationship between 𝑥 and 𝑧. Substituting the relation above between
riginal feature 𝑥 and augmentation feature 𝑥𝑧𝑖 into Eq. (1), we will get
he 𝑦|𝑥=𝑧𝑖 with different proportionality coefficient 𝛼.

𝑦|𝑥=𝑧𝑖 = 𝑊𝑥𝑦 ⋅ 𝑧𝑖 +𝑊𝑐𝑦 ⋅ 𝑐 + 𝜀𝑦
= 𝛼𝑖 ⋅𝑊𝑥𝑦 ⋅ 𝑥 +𝑊𝑐𝑦 ⋅ 𝑐 + 𝜀𝑦
= 𝛼𝑖 ⋅ 𝑦||𝑑𝑜(𝑥=𝑥) +𝑊𝑐𝑦 ⋅ 𝑐 + 𝜀𝑦

(11)

where 𝑦|𝑑𝑜(𝑥=𝑥) denotes causal path X→ Y . Substituting the 𝑦|𝑥=𝑧𝑖
with Eq. (9) obtained by learning, we obtain the learning object the
5

instrumental variable estimation. The benefit is obviously that we
can suppress the confounding effect without directly observing the
confounding variable B. The goals of causal intervention learning can
be summarized as:

𝐼𝑉 = min
∑

𝑖≠𝑗

‖

‖

‖

(

𝛼𝑖 − 𝛼𝑗
)

⋅
(

𝑊𝑏𝑦 ⋅ 𝑏 + 𝜀𝑦
)

‖

‖

‖

(12)

3. Case study

In this section, two case studies are conducted to verify the validity
of the proposed CIGNN model. The first case study is the fault diag-
nosis of a three-phase flow device. The second case study is the fault
diagnosis of a gas turbine in a nuclear power system. Experiments were
conducted on NVIDIA GeForce RTX 3090 GPU using Pytorch-1.11 and
DGL-1.0.2 frameworks.

3.1. Data description

3.1.1. Three-phase flow facility data
The three-phase flow facility (TFF) [37] is a complex industrial sim-

ulation system designed by Cranfield University to provide measurable
flow rates of water, oil and air flows to pressurized systems. Fig. 5(a)
illustrates the simplified sketch of TFF facility. The main components
comprise several pipes of varying orifice sizes and geometries and a
gas–liquid two-phase separator. The facility is capable of transporting
single-phase air, water and oil, as well as mixtures of these fluids, at
specific speeds. The system has a total of 24 sensors as input variables
to the model system for measuring pressure, flow, density and tempera-
ture at different locations in the system. Data is captured at a sampling
rate of 1 Hz for all three-phase flow facilities. The system has four
air flows and five water flows, which can be combined in 20 different
ways. The TFF facility simulates three datasets under normal operating
conditions and six typical faults that can occur during actual operation
using 20 process inputs. Note that the first 23 variables are used for
all the fault study, whereas variable 24 is only used in fault 6. After
running for a certain period of time, the simulated system introduces
faults, which are automatically resolved once they reach a certain level,
resulting in the system returning to its normal state. As a result, normal
operation data and faulty data alternate. To better extract the fault
data, we cut the data into 50-second segments as samples. The data
is available at TFF data.

3.1.2. Nuclear power system data
The nuclear power system (NPS) [38] dataset consists of encrypted

operational data collected by large sensors in the nuclear power system.
The system is a power plant energy generation module consisting of
steam generators, turbines, generators, condensers, pumps, valves and
associated equipment, as shown in Fig. 5(b). The NPS which has 121
sensors collecting system monitoring data, recording pressures, temper-
atures, and associated valve opening and closing variables for the major
components. For each simulation, the system starts in a normal state,
operates for a period of time, and then introduces a fault at some point
during operation, so that the fault data alternates with the normal data.
The time series multivariate signals are sampled at 4 Hz, and we split
the NPS data into segments consists of 60 signals. In actual monitoring,
multiple sensors are installed at the same location, resulting in data
redundancy. To remove redundant and irrelevant measurements and to
reduce computational costs, we selected the first 64 sensor variables, as
well as 22 typical fault types and normal conditions.

The TFF and NPS datasets were preprocessed by max–min normal-
ization and randomly select 80% of the samples as the training set and
the rest as the test set, and the specific fault types and samples are
shown in Table 1.
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https://www.mathworks.com/matlabcentral/fileexchange/50938-a-benchmark-case-for-statistical-process-monitoring-cranfield-multiphase-flow-facility
https://www.mathworks.com/matlabcentral/fileexchange/50938-a-benchmark-case-for-statistical-process-monitoring-cranfield-multiphase-flow-facility
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Fig. 5. Simplified sketch (a) three-phase flow facility, (b) nuclear power system.
Table 1
Fault types in datasets.

Dataset Fault type Samples of
training set

Samples of
testing set

TFF Fault case(1-6) 1386 315
Normal 534 133

NPS Fault case(1-21) 3557 890
Normal 1563 390

3.2. Experimental setup

3.2.1. Baseline methods
To validate the effectiveness and superiority of CIGNN, we compare

CIGNN with four different fault diagnosis methods, including ma-
chine learning methods, deep learning-based methods, and GNN-based
methods.

(1) KNN: KNN [32] is a common classification machine learning
algorithm that can be used for fault diagnosis.

(2) GAT: GAT [31] utilizes the attention mechanism to capture the
importance of neighboring nodes, focusing on relevant informa-
tion during feature extraction and learning complex relationships
in graph data.

(3) IAGNN: IAGNN [12] creates feature subgraphs from uncovering
correlations between sensor signals through interactive sensing.
The final graph embedding is created by fusing each subgraph
feature using a weighted summation function.

(4) PKT-MCNN: PKT-MCNN [38] develops a coarse-to-fine progres-
sive knowledge transfer structure. Specifically, the MCNN module
learns coarse/fine-grained tasks and extracts generic fault in-
formation. PKT migrates the coarse-grained knowledge to the
fine-grained tasks.

3.2.2. Implementation details and evaluation metrics
Extensive experiments are conducted on the CIGNN model to select

the hyperparameters that produce the best results. The learning rate is
selected from {0.0001, 0.0005, 0.001}, and the batch size is selected
from {32, 64}. When applying the CIGNN model to the TFF dataset,
input graph consists of 24 nodes corresponding to 24 sensors. For the
NPS dataset, the number of nodes is 64. Metrics such as accuracy,
receiver operating characteristic (ROC) curve, and confusion matrix are
used to evaluate the performance of different fault diagnosis methods.
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Table 2
Accuracy of different fault diagnosis methods.

Dataset
Model KNN GAT IAGNN PKT-MCNN CIGNN

TFF 0.8197 0.8768 0.9229 0.8858 0.9634
NPS 0.7547 0.7886 0.8734 0.8650 0.8929

Fig. 6. Accuracy of different fault diagnosis methods.

Fig. 7. Convergence of the CIGNN on (a) TFF, (b) NPS dataset.

Industrial equipment usually stops working before a fault occurs, so
the fault data is significantly less than the normal data. Following this
principle, a large number of experiments have been carried out and the
results of different fault diagnosis methods are presented in Table 2 and
Fig. 6 provides a visualization of the results. Fig. 7 depicts the training
and testing accuracy trajectories of the CIGNN model on the TFF and
NPS datasets.

3.3. Fault diagnosis performance

3.3.1. TFF experiment results analysis
Firstly, the CIGNN model exhibits superior performance on the TFF

dataset compared to the baseline methods. Experiments demonstrate
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Fig. 8. TFF features visualization via t-SNE of :(a) Raw data, (b) KNN, (c) GAT, (d) PKT-MCNN, (e) IAGNN, (f) CIGNN.
that the multivariate time series embeddings learned by CIGNN effec-
tively reveal the fault characteristics of complex industrial processes.
Secondly, it can be observed that GAT outperforms KNN because GAT
is better at fusing information from multiple sensor signals, while KNN
can only cluster based on data. PKT-MCNN decomposes numerous
fault diagnosis problems in complex industrial processes into multiple
sub-problems with fewer faults by constructing fault trees, and thus
the diagnostic performance is better than that of KNN and GAT. In
practice, PKT-MCNN lacks versatility due to the small size of the target
diagnostic task and the imprecise granularity structure. IAGNN utilizes
an interaction-aware module that topologically takes into account the
differences between fault types, and thus the IAGNN module has the
best diagnosis performance among the baseline methods. However, it
does not take into account that irrelevant sensor signals will interfere
with prediction, and thus IAGNN is not as effective as CIGNN.

We analyze the causality between sensor signals and fault based on
causal theory. Fault signals play a solely deterministic role in predic-
tion, referred to as causal features. Irrelevant sensor signals are referred
to as confounding features. Moreover, causal features and confounding
features are highly coupled in sensor signals, making it impossible to
explicitly decouple them. To mitigate the confounding effects caused
by confounding features, CIGNN designs an instrumental variable to
implement causal intervention on graph.

To visually analyze the causal intervention effect of CIGNN, we
extract the raw data features of the TFF dataset and the features
of last layer of different models training and visualized them using
t-distributed stochastic neighborhood embedding (t-SNE) [39]. The
visualization results show that the sample features of TFF faults are sep-
arated according to different machine states and operating conditions,
as shown in Fig. 8(a). The features extracted by CIGNN show better
clustering performance due to the fact that CIGNN optimizes the feature
and structural information of the graph through intervening variable,
which addresses the bias caused by confounding features. CIGNN is able
to accurately identify fault types even though many fault types have
similar spatial distributions.
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Table 3
Computational time comparison (seconds)

Dataset
Model KNN GAT IAGNN PKT-MCNN CIGNN

TFF 6.536 1.893 1.901 1.183 1.017
NPS 64.332 11.789 15.437 3.115 6.326

3.3.2. NPS experiment results analysis
CIGNN also achieves optimal results on large-scale fault diagnosis

tasks for complex industrial processes. We use the confusion matrices
to describe the ability of the CIGNN to handle unbalanced data, as
shown in Fig. 9. CIGNN demonstrates superior accuracy in recognizing
all 22 fault types, surpassing the competing methods, when handling
large-scale imbalanced datasets such as NPS. The CIGNN can effectively
perform causal intervention and mitigate confounding effects even in
the face of large-scale dataset. To evaluate the sensitivity of CIGNN,
we compare the ROC curve of different fault diagnosis methods on TFF
and NPS dataset, as shown in Fig. 10. It can be seen that the ROC curve
of CIGNN achieve optimal results, which are significantly higher than
the baseline methods. In addition, the ROC curve of CIGNN is smooth
on the NPS, whereas baseline methods show significant tremble, which
further proves the superiority of CIGNN.

In terms of computational time, measuring the testing time yielded
the results shown in Table 3. CIGNN achieves the shortest computation
time on the TFF, indicating that it can produce classification results
more quickly. PKT-MCNN records the shortest computation time on
the NPS. Due to the NPS containing a large variety of fault types, PKT-
MCNN is designed with a hierarchical fault tree from coarse to fine, seg-
menting fault diagnosis into multiple subtasks. It only needs to compare
with similar faults according to the fault tree, significantly improving
computational efficiency. However, PKT-MCNN cannot guarantee accu-
racy with each comparison, as its accuracy is not high and it is unable
to construct a fault tree on the TFF with few fault types. Compared with
PKT-MCNN, CIGNN sacrifices a small amount of computational time to
significantly enhance the accuracy. Moreover, the computation time of
CIGNN is shorter than other baseline methods.
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Fig. 9. Confusion matrices of the NPS. (a) KNN, (b) GAT, (c) PKT-MCNN, (d) IAGNN, and (e) CIGNN.
Fig. 10. ROC curve comparison. (a) TFF, (b) NPS.
3.4. Analysis on causality validity

The GAT, IAGNN, and CIGNN models are all GNN-based methods.
GAT introduces an attention mechanism that allows each node to
dynamically adjust weights based on its relationship with neighbor-
ing nodes, allocating more attention to important neighboring nodes.
However, this attention mechanism only analyzes at the feature level
and cannot reflect the true interaction between components in complex
industrial processes. In contrast, IAGNN utilizes an interaction-aware
module to analyze the interaction between components from a topo-
logical perspective and explores the differences between different fault
types, thus achieving higher fault diagnosis accuracy than other base-
line methods. However, IAGNN does not consider the influence of
irrelevant sensor signals. To address this issue, CIGNN identifies causal
features that play a decisive role in fault diagnosis based on causal
theory and designs an instrumental variable to implement causal inter-
vention on input graph to mitigate the interference effects. Obviously,
8

Table 4
Ablation study results.

Attention Intervention TFF NPS

— — 0.8751 0.7886
✓ — 0.8923 0.8013
— ✓ 0.9437 0.8628
✓ ✓ 0.9634 0.8928

Ablation studies on: (1) attention mechanism for graph construction, (2) causal
intervention learning.

the CIGNN achieves best results, which indicates that the causal anal-
ysis is correct and the causal intervention is effective from the GNN
perspective.

To evaluate the effectiveness and contribution of each module in the
CDGNN model, we conducted ablation studies. This involved creating
variations of the CIGNN model, with the specific configurations and
results detailed in Table 4. It is evident that each module in CIGNN
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Fig. 11. Hyper-parameter analysis on CIGNN.
plays a crucial role. Constructing a graph using attention mechanisms
is beneficial for learning the physical topology relationships among
components in complex industrial processes. The causal intervention
learning module has the greatest impact on classification performance,
highlighting its core role within CIGNN. According to the ablation
results, when these two modules are removed, CIGNN becomes a
standard GNN model, and its classification performance approaches
that of GAT. This indicate that the causal analysis is correct and the
causal intervention is effective from the GNN perspective

3.5. Hyper-parameter analysis

We analyze the sensitivity of 𝜆1 and 𝜆2 and plotted the classification
performance in Fig. 11. For 𝜆1 and 𝜆2, there is a specific range that
maximizes the test performance across all datasets. CIGNN performs
best when 𝜆1 is 0.2 and 𝜆2 is 0.1. Notably, we observe that the NPS
dataset shows higher sensitivity to change in 𝜆1 and 𝜆2, which may be
due to the fact that the NPS dataset is more complex and unbalanced.

4. Conclusion

In this study, we analyze the causality between sensor signals and
fault based on causal theory, and then propose a causal intervention
graph neural network (CIGNN) model. This model considers fault diag-
nosis task from a causal theory perspective and transforms it into graph
classification tasks. Initially, we construct the sensor model into a struc-
tural attribute graph through the attention mechanism, preliminary
determining the topological relationships among multiple sensors. To
mitigate the confounding effect caused by irrelevant sensor signals, we
designed an instrumental variable to implement causal interventions
on input graphs. The prediction derived from the causal intervention
graphs is closer to the actual results. By reducing the confounding
effect, CIGNN can improve the robustness and interpretability of intel-
ligent fault diagnosis. Fault diagnosis is usually an open-set recognition
task due to the volatility of mechanical equipment and operating con-
ditions. Future research directions include applying CIGNN to open-set
recognition, which requires not only accurate diagnosis of known faults
using causal features, but also effective identification of unknown faults
to prevent new faults from hiding and affecting industrial production.
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