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Abstract—Industrial Cyber-Physical Systems (ICPS) inte-
grating disciplines such as computer science, communica-
tion technology, and engineering, have become a crucial
component of modern manufacturing and industry. How-
ever, ICPS faces numerous challenges during long-term
operation, including equipment faults, performance degra-
dation, and security threats, etc. To achieve efficient main-
tenance and management, prognostics and health manage-
ment (PHM) has been widely applied in the critical tasks of
ICPS such as fault prediction, health monitoring, and main-
tenance decision-making. The emergence of large-scale
foundation models (LFMs) like BERT and GPT marks a
significant advancement in artificial intelligence (AI) tech-
nology, demonstrating substantial application potential in
multiple fields. The accumulation of AI technology, rapid
development of LFMs, and the abundance of industrial data
and industrial process knowledge provide the foundational
conditions for the construction and advancement of indus-
trial LFMs. However, there is currently a lack of consensus
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on applying LFMs of PHM in ICPS, necessitating a system-
atic review and roadmap to clarify future development di-
rections. To bridge this gap, this survey provides a compre-
hensive survey and understanding of the recent advances
in LFMs of PHM in ICPS. It provides valuable references for
decision makers and researchers in the industry, and helps
to further improve the reliability, availability and safety of
ICPS.

Index Terms—Industrial cyber-physical systems, prog-
nostics and health management, fault diagnosis, remaining
useful life, large-scale foundation models, industrial pro-
cess knowledge.

I. INTRODUCTION

W ITH the rapid development of science and technology
and the continuous progress of intelligent manufactur-

ing, a revolution has been developed in industrial systems to
make them more intelligent via the information communication
technologies (ICT). With the increasing penetration of the ICT
in industrial systems, the transformation of traditional industrial
settings into the industrial environment on cyber-physical sys-
tems (CPS) pushes the development of industrial cyber-physical
systems (ICPS) [1]. ICPS is a system that integrates physical
machinery, sensors, actuators and communication network sys-
tems in industry [2]. The modern equipment is developing in the
direction of large-scale, complexity, and intelligence [3]. Once
the mechanical equipment failure, may cause major accidents,
will bring huge economic losses. If faults can be detected in
time and appropriate decisions can be made, accidents can be
avoided to the maximum extent possible. On one hand, prognos-
tics and health management (PHM), which includes condition
maintenance, fault diagnosis, trend prediction, and life cycle
assessment, provides an effective tool for the safety and reliable
operation of ICPS [4]; on the other hand, by leveraging advanced
technologies such as data analytics, machine learning, and ar-
tificial intelligence, ICPS can monitor, control, and optimize
physical processes in real time, which can help to improve the
accuracy and efficiency of PHM in return.

Traditionally, the PHM for ICPS can be divided into two
ways: model-based methods and data-driven methods. Model-
based PHM methods usually need to establish system mod-
els of complex ICPS based on physical knowledge and
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mathematical foundations, which grow more and more complex
with the increase of system integration degree. Data-driven PHM
methods can provide the state estimation results via analyzing
the sensor data in ICPS without the requirement of prior knowl-
edge and therefore develop rapidly. Especially in recent years,
data-driven PHM methods in ICPS have undergone significant
development, driven by emerging technologies such as artificial
intelligence (AI) and machine learning (ML). Classical deep
networks such as convolutional neural networks, auto-encoders,
and recurrent neural networks have become effective tools for
PHM [5], [6]. However, deep learning-based PHM methods in
ICPS still faces many challenges. Firstly, the data in ICPS come
from different types of equipment and sensors with different
formats and features, and the heterogeneous data from multiple
sources can limit the representation capability of model. Sec-
ondly, decisions require clear explanations and justifications in
ICPS, and thus require the development of interpretable PHM
models for fault diagnosis and prediction. In addition, existing
methods are limited to designing specific models for specific
ICPS scenarios, and the trained models cannot be applied to
other tasks or even similar tasks. Therefore, PHM models need
to have generalization capabilities to cope with complex ICPS
scenarios.

Recently, transformer-based large language models (LLMs)
(e.g., GPT-3 [7], T5 [8], BERT [9], etc.) and vision foundation
models (VFM) (e.g., ViT [10], CLIP [11], SAM [12], etc.) have
achieved outstanding performance in language understanding
and vision recognition tasks. The success of ChatGPT proves
the effectiveness of large-scale foundation models (LFMs),
which triggers the research of large models in various industrial
domains, such as the medical large model Med-PaLM [13],
Ocean large model AI-GOMS [14], and Geographic large model
ERNIE-GeoL [15]. How to leverage cross-domain knowledge
in industry to build industrial LFMs has sparked great interest
among scholars.

To overcome the limitations of existing PHM methods in
ICPS, LFMs offer possible solutions for industrial systems.
LFMs are trained on large-scale diverse data, learn complex
patterns and relationships without explicit feature engineering,
and can be fine-tuned to capture domain-specific knowledge of
mechanisms and dynamics. Yan et al. summarised the current
state of PHM development and proposed raodmaps of LFMs
for PHM [16]. Considering the specificity of ICPS, there is no
conclusion on how to build LFMs in ICPS, and there is a lack
of systematic literature review. To fill this gap, we explore in
this article the potential of LFMs to address the ICPS-PHM
challenge, focusing on their scalability, adaptability and perfor-
mance. Through this survey, we aim to provide a comprehensive
understanding of the capabilities and limitations of LFMs in
industrial systems. By identifying key research directions and
challenges, we hope to stimulate further developments in the
field and pave the way for the successful integration of AI
technologies into ICPS. The contributions of this paper can be
summarised as follows.

1) This survey provides a comprehensive review of key
technologies and research advances in PHM for ICPS, and
summarizes the industrial process knowledge in ICPS.

2) This survey reviews the main components, research
progress and practical applications of the LFMs.

3) Taking into account the actual circumstances in ICPS, this
survey systematically analyzes how to establish LFMs of
PHM in ICPS, emphasizing that industrial knowledge is
the key to improving the interpretability and trustworthi-
ness of the models.

4) This survey analyzes the challenges and possible solu-
tions for LFMs of PHM in ICPS, taking into account the
data situation in ICPS and the limitations of AI technol-
ogy.

The rest of the paper is organized as follows. Section II
focuses on the architecture of ICPS and key technologies of
PHM. Section III describes to the key components of LFMs and
its research advances and applications. Section IV presents the
industrial process knowledge in ICPS. Section V systematically
describes the research developments in PHM for ICPS and how
to implement the LFMs. Section VI provides a comprehensive
discussion of opportunities and challenges for LFMs in ICPS.
Conclusions are presented in Section VII.

II. PROGNOSTICS HEALTH MANAGEMENT FOR ICPS

ICPS is a networked control system that deeply integrates
sensing, computing, control, Internet and physical objects, and
it is an important part of the national economic construction.
ICPS have complex topologies, diverse abnormal threats, and
inefficient system recovery after failures. The establishment of
ICPS-PHM can not only significantly improve system reliability,
recovery efficiency and security, optimize maintenance cost,
but also support intelligent decision-making, which is of great
significance to promote the development of ICPS. In this section,
we introduce the architecture of ICPS and key technologies of
PHM in the era of Industry 4.0.

A. Industrial Cyber-Physical Systems

ICPS integrate physical components for sensing and drive
with cyber components for computing and communication to
monitor, control, and automate the operation of industrial pro-
cesses, and typically consist of a physical system and an informa-
tion system. The physical system includes sensors, controllers,
actuators, and corresponding data transmission network com-
ponents. The information system consists of data transmission
network components, data storage components, and control and
computing infrastructure components to interconnect, operate,
and intelligently manage ICPS. Therefore, the architecture of
ICPS is divided into three layers: physical layer, cyber layer, and
application layer [17], and data signals are transmitted through
various network protocols and gateway components in cyber
layer, as shown in Fig. 1. At present, ICPS have been widely used
in electric power systems [18], transportation [19], industrial
manufacturing [20] and other fields. With the rapid development
of technologies such as wireless sensors, cloud computing, and
Internet of Things (IoT), the application of ICPS will be even
more extensive [21].

When faults occur in ICPS, the physical and chemical
production processes can be severely impacted. Due to the
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Fig. 1. The general architecture of ICPS.

presence of seepage effects, these effects may propagate rapidly
through internal coupling relationships, leading to large-scale
cascading failures, which in turn cause massive economic losses,
environmental pollution, and even casualties. Therefore, it is
necessary to establish an evaluation and certification system
for ICPS safety protection and expedite the implementation of
ICPS security measures [17]. PHM has become an indispensable
maintenance strategy in modern industry through its advan-
tages of advance warning, optimized maintenance, enhanced
efficiency and safety, etc. The application of PHM to ICP can
effectively prevent and mitigate the impact of faults, ensure
the continuity and stability of the production process, reduce
economic losses, protect the environment and personnel safety.
This holds substantial economic value and social significance.

B. Prognostics Health Management

PHM aims to comprehensively utilize equipment sensor data,
expert knowledge, and maintenance support resources, lever-
aging AI methods and reasoning models to achieve equip-
ment condition monitoring, fault identification and diagnosis,
health status assessment and prediction, and ultimately pro-
vide maintenance and other health management measures [22].
Previously, ICPS maintenance strategies have evolved through
four stages: reactive maintenance, periodic preventive main-
tenance, condition-based maintenance, and predictive mainte-
nance. PHM technology integrates the concepts of condition-
based maintenance and predictive maintenance, successfully
achieving effective fault diagnosis and early prevention of equip-
ment faults.

PHM includes data acquisition and transmission of sensor
networks, equipment condition monitoring, fault diagnosis, re-
maining useful life prediction and health management, etc, and
the framework as shown in Fig. 2. First, status data such as
vibration, rotational speed and temperature are collected by
sensors deployed on the equipment. Considering the influence

of working conditions and noise, signal preprocessing methods
are essential to ensure the quality of data. Subsequently, fault
feature information is extracted from data, including signal
processing-based methods and deep learning-based methods.
Then, anomaly detection, fault diagnosis and prediction are
performed based on the fault features. Finally, maintenance
decisions and recommendations are made based on the fault
diagnosis and prediction results. Fault diagnosis and remaining
useful life prediction are key techniques of PHM, which are
essential for achieving effective management and maintenance
of equipment [23].

1) Fault Diagnosis: The evolution of fault diagnosis has pro-
gressed from experience-driven, to model-driven, and then to
knowledge-driven and data-driven [24]. Initially, fault diagnosis
mainly relies on the experience and intuition of maintenance per-
sonnel, which suffered from high subjectivity and low efficiency.
Subsequently, fault diagnosis began to introduce mathematical
models, establishing physical or mathematical models of the
equipment to achieve more objective and precise fault identifi-
cation. In the 1990 s, knowledge-based fault diagnosis began to
emerge. These methods extract expert experience and diagnosis
rules to establish fault knowledge base, enabling more intelligent
fault diagnosis.

In recent years, with the advancement of sensor technology
and Big Data analysis techniques, data-driven diagnosis methods
based on massive operational data have gradually matured. The
intelligent fault diagnosis (IFD) method based on deep learning
can adaptively extract features from vibration signals, providing
excellent fault diagnosis results while significantly improving
the efficiency of diagnosis. However, due to the complexity of
industrial equipment structures and the variability of operating
environments, IFD faces various challenges. To ensure stable
and reliable fault diagnosis, these challenges must be carefully
considered and addressed.

Firstly, equipment monitoring data typically originate from
multiple sensors and various measurement points, such as vi-
bration, temperature, and pressure. This multi-source heteroge-
neous data provides information about equipment health from
multiple dimensions but they can impact reduce the model’s
ability to learn representations. Secondly, industrial equipment
usually operates under healthy conditions, so there is much more
health data than failure data. Therefore, industrial data suffers
from small samples and long-tailed distributions. Therefore,
industry suffers from data imbalance problems such as few-
shot and long-tailed distributions. Additionally, deep learning
models generally assume that training and testing data are inde-
pendent and identically distributed (i.i.d.), but this assumption
may not hold for industry. The operational conditions of the
equipment, including speed, load, and environmental factors,
are highly complex and variable. As a result, there is distri-
bution drift between training and testing data, which hinders
the diagnosis accuracy of deep learning models in real-world
scenarios.

To address these practical challenges, researchers have been
actively exploring various methods. Currently, the focus of deep
learning-based fault diagnosis research includes information
fusion [25], data imbalance and few-shot learning [26] as well
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Fig. 2. Illustration of PHM framework of ICPS.

as domain transfer and domain adaptation [27]. These advanced
techniques promise to significantly improve the accuracy and
reliability of IFD for industrial equipment.

2) Remaining Useful Life Prediction: Fault prediction aims
to provide early warnings of potential faults in industrial equip-
ment, predicting degradation trends and remaining useful life
(RUL). Based on current classification methods, RUL prediction
models are divided into two categories: physics-based models
and data-driven models [28]. Physics-based models are con-
structed through mathematical or physical models of degrada-
tion phenomena in industrial system components, using special-
ized models to characterize degradation and substitute existing
data into the models to determine RUL. Data-driven models rely
on previously observed data to predict the future state of the
system or infer RUL by matching similar historical patterns.
Data-driven models can effectively model highly nonlinear,
complex, and multidimensional systems without requiring prior
expert knowledge of the physical behavior.

The core aspects of RUL include: 1) assessing the current
health status of the equipment, constructing health indicators
(HI), and analyzing potential degradation trends; 2) estimat-
ing the time when the equipment may fail in the future and

predicting the RUL. The construction of HI for industrial
equipment is fundamental for RUL prediction, as an appropriate
HI construction method can ensure the accuracy of subsequent
fault predictions. Accurate RUL prediction provides a basis
for determining the optimal maintenance time of equipment,
thus achieving economic operation and maintenance. Traditional
physics-based RUL prediction methods need to consider the
internal fault mechanisms of the equipment, which can be limit-
ing when applied to complex industrial equipment. Data-driven
methods can directly extract the changing patterns of health sta-
tus characteristics from condition monitoring data. Data-driven
RUL prediction methods within deep learning frameworks have
promising application prospects [29], [30].

III. LARGE-SCALE FOUNDATION MODELS

The parameter sizes and training data volumes of LFMs have
rapidly increased, significantly enhancing model performance.
Consequently, the research and application of LFMs have be-
come hot topics in artificial intelligence. In this section, we
explore the key Components of LFMs and their development
and applications.
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Fig. 3. Model architecture of the transformer.

A. Key Components of LFMs

1) Multiple Self-Attention Mechanism: Self-attention (SA) is
the basic module in Transformer. SA projects the input se-
quences into the set of queries Q, keys K, and values V
with dimension C via three learnable linear mapping matrices
WQ,WK ,WV , and then obtains the self-attention weights by
using the following formula:

SA(Q,K, V ) = Softmax

(
QKT

√
C

)
V (1)

By linearly transforming the input sequences, SA is able
to capture the semantic features and distant dependencies of
the input sequences. Multi-headed self-attention (MSA) is an
extension of SA, which consists of n SA heads, realizes the
attention operation by paralleling it, and splices the outputs of
all the SA heads after a linear projection layer:

MSA(Q,K, V ) = Concat (SA1, SA2, L, SAn) ∗W 0 (2)

where W 0 denotes the weight of the fully connected layer for
fusing the output weights of multiple attention headers.

2) Transformer: With its exceptional model capacity and
parallelization capabilities, the Transformer has become the
standard backbone model for developing various LFMs. The
architecture of Transformer as depicted in Fig. 3, consists of a
stack of multiple encoders and decoders [31]. Each encoder is
composed of two basic components: a MSA module and a feed-
forward network (FFN) module. The MSA module employs a
SA module to learn the relationships within the input sequences,
while the FFN module includes an activation function and two
linear normalization layers (LayerNorm). The MSA and FFN
modules utilize residual connections and layer normalization
structures. Given an input x0 and its positional embedding xpos,

the output xk of the k − th encoder can be represented as:

x0 = x0 + xpos

xk = LayerNorm(xk−1 +MSA(xk−1))

xk = LayerNorm(xk + FFN(xk)) (3)

The decoder consists of two MSA modules and one linear
layer. The first MSA module adds a one-way attention mask
so that the input embedding vectors can only focus on past
embedding vectors and themselves, ensuring that the prediction
results depend only on the generated output lexical elements.
Subsequently, the output of the masked multi-attention module is
processed along with the output of the encoder through a second
MSA module. The visual Transformer has a similar structure,
with the difference that the input is a combination of 2D image
embedding vectors, positional coding and category embedding
vectors.

B. LFMs for NLP and CV

Transformer effectively addresses the issue of long-term de-
pendencies in long sequence inputs, and its parallelism en-
hances training efficiency and alleviates problems such as gra-
dient vanishing and exploding due to excessively large models.
Transformer has achieved remarkable results in various tasks
within natural language processing (NLP) and computer vision
(CV), laying a solid foundation for the rapid development of
LFMs [32].

In 2018, Google introduced BERT [9], the first LLM with over
300 million parameters. RoBERTa [33] utilized more training
data and resources, introduced a dynamic masking strategy that
achieved state-of-the-art on multiple tasks. In the same year,
OpenAI released GPT-1 [34], which uses autoregressive models
for pre-training. Subsequently, GPT-2 [35] increased the number
of parameters to 1.5 billion by extending the model capacity
and data diversity. In 2020, OpenAI released the GPT-3 [7].
GPT-3 extended the model architecture based on GPT-2, and the
number of parameters reached 175 billion, realising a quantum
leap in the number of parameters of the model. ChatGPT based
on GPT-3 aroused widespread attention to AI in the society.
GPT-3.5 [36] utilized comparative learning of text embedding
and code embedding to greatly enhance the inference of the
model. In 2022, Google released the PaLM [37] with a stagger-
ing number of 540 billion parameters. In February 2023, Meta
AI launched LLaMA [38], followed by the release of the more
powerful LLaMA-2 [39] in September, which greatly advanced
the progress of LFMs.

Vision Transformer (ViT) [10] applied Transformer to CV
for the first time, validating the feasibility of Transformer as a
unified vision model architecture. In 2021, OpenAI proposed the
large-scale visual language model CLIP [11], which verified the
effectiveness of large-scale weakly supervised pre-training on
text-image combination. In 2022, Nanjing University proposed
video masked autoencoders (VideoMAE) [40], which extended
pre-trained large-scale models to the video field for video tasks
such as action recognition and action detection. In 2023, Meta AI
proposed the segment anything model (SAM) [12], a generalized
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Fig. 4. The trends of the LLM scale changes.

image segmentation model trained on the Segment Anything
1- Billion mask dataset [41]. SAM used prompt engineering
for downstream segmentation tasks and is able to generalise
to an unprecedented number of new objects without the need
to fine-tune downstream tasks. The PaLM-E [42] was the first
large-scale multimodal model to handle a variety of of embod-
ied reasoning tasks from a variety of observational modalities
on multiple implementations. GPT-4 extended [43] input from
textual data to multimodal data. The development of LFMs is
shown in Fig. 4.

C. LFMs for Time Series

Time series analysis is crucial in fields such as retail sales fore-
casting, time series missing value filling, and industrial anomaly
detection, etc. Many scholars have explored the possibility of
using LFMs for time series analysis. PromptCast [44] is a new
paradigm for time series prediction based on LLMs. PromptCast
transformed numerical values into prompts and constructed
prediction tasks in a sentence-to-sentence manner, enabling the
application of LLMs in prediction. TIME-LLM [45] utilized the
powerful pattern recognition and inference capabilities of LLMs
to match time series data with natural language, demonstrat-
ing superior performance in few-shot and zero-shot learning.
LLM4TS [46], TEST [47], TEMPO [48], and LLMT-IME [49]
are also time series foundation models based on LLMs, con-
tributing to the construction of a unified framework for time
series modeling.

TimeGPT [50] is the first time series LFMs to be trained using
more than 100 billion data from finance, meteorology, energy,
network traffic, etc. and allows users to fine-tune it with their own
data, which ultimately supports various forecasting and anomaly
detection tasks. TimeGPT opens up new possibilities for time
series analysis and is promising to drive further development in
related fields.

Considering the characteristics of time series data, many
scholars have conducted extensive research on time series LFMs
in specific fields. Yu et al. explored the use of LLMs to fore-
cast stock returns in the financial market [51], and Xie et al.
conducted a zero-shot analysis of ChatGPT’s ability to forecast
multimodal stock movements [52]. Brown et al. demonstrated
that, with only minor tuning, LLMs can be fundamentally trained
on a wide range of physiological and behavioural time-series

data and make meaningful inferences about affairs in clini-
cal and health settings [53]. AuxMobLCast made predictions
about future human mobility by turning human movement data
into natural language sentences and fine-tuning a pre-trained
LFMs [54].

D. LFMs for Industry

After going through the stages of mechanization, electrifica-
tion, automation, and informatization, industrial development
is currently transitioning from digitalization to intelligence. A
large amount of data, foundational capabilities, and application
scenarios have been accumulated in ICPS, providing a solid
foundation for the integration of ICPS with AI technologies.
AI is gradually demonstrating human-like understanding and
analytical capabilities. The integration of these capabilities with
industrial scenarios is introducing intelligence into industrial
production, maintenance, and health management, potentially
advancing ICPS towards an adaptive, self-decision-making, and
self-executing intelligent stage.

In November 2023, SmartMore released the first industrial
multimodal large model, IndustryGPT V1.0. The training data
for IndustryGPT V1.0 includes five major disciplines of optics,
mechanics, electronics, computer science, and software engi-
neering, and comprehensive knowledge of industries such as
equipment, mining, electric power, petrochemicals, and con-
struction, etc., covering more than 200 different industrial sce-
narios and over 3 million industrial images. It can understand
scene intentions, easily answer questions in production environ-
ments, and provide precise decision-making support. COSMO-
GPT is released by COSMOPlat in January 2024. Based on an
open-source general large model, COSMO-GPT enhances its
performance on industrial tasks through knowledge injection,
model fusion, and model judgment. With COSMOPlat’s tech-
nical accumulation in AI and massive industrial data, COSMO-
GPT boasts over 10 billion parameters and integrates more
than 3,900 mechanistic models and over 200 expert algorithm
libraries. Its functionality spans intelligent question answering,
text generation, image recognition, database querying, and de-
cision support, etc.

The accumulation of AI technology, the rapid development of
large models, and the abundance of industrial data and knowl-
edge provide fundamental conditions for the construction and
development of industrial large models. However, existing in-
dustrial large models primarily function as question-answering
support systems and are not yet capable of directly participating
in the process monitoring and health management of ICPS.
Leveraging industrial data, knowledge, and existing large model
technologies to construct LFMs of PHM can contribute to the
stable operation and healthy development of ICPS, holding
significant social and economic value.

IV. KNOWLEDGE IN ICPS

Data-driven ICPS-PHM methods lack interpretability, al-
though they can provide highly accurate prediction and diagnosis
results. Enhancing the interpretability can boost the credibility
of the model as well as subsequent optimisation of the model,
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thereby achieving more efficient and reliable PHM. Industrial
systems encompass extensive industrial knowledge, such as
equipment structure knowledge, fault mechanism knowledge,
and historical knowledge of equipment [55]. In ICPS, the richer
the knowledge stored in the system, the better the problem
solving ability. Integrating industrial knowledge into industrial
foundation models is an effective method to enhancing their
stability and interpretability [56].

Fault diagnosis, prediction and processing in ICPS mainly
involve three basic elements: diagnosis object, diagnosis sys-
tem and diagnosis knowledge. Combining the characteristics of
ICPS, expert experience and mechanism knowledge, we classify
industrial knowledge into four major categories.

A. Equipment Knowledge

Equipment knowledge includes structural, functional and be-
havioural knowledge. Structural knowledge refers to the com-
ponents of a equipment or system and their connecting rela-
tionships, covering different levels of systems, components and
parts. Functional knowledge relates to the specific functions that
need to be achieved in the design of equipment or systems,
and each structural component fulfill a particular function. The
lack of function of any structure and component may directly
or indirectly lead to fault. Behavioural knowledge describes
the state of a equipment or system, which is reflected by the
performance parameters of the system during operation.

B. System Knowledge

System knowledge includes model knowledge and historical
knowledge. Model knowledge covers deep understanding of
system principles, models, and equations, such as input-output
energy transformations and the dynamic characteristics of equip-
ment or systems. Historical knowledge covers the manufacture,
installation, monitoring, diagnosis, maintenance records, and
fault history of the equipment.

C. Fault Knowledge

Fault knowledge comprises mechanism knowledge, conse-
quence knowledge, processing knowledge and feature knowl-
edge. Mechanism knowledge is obtained by comprehensively
analysing the structure, function and behaviour of equipment
to obtain the rule of formation and development of equipment
failure. After the occurrence of equipment failure, the direct
or indirect impact on the components or the whole system is
called consequence knowledge. Processing knowledge refers
to the measures that should be taken after the occurrence of
equipment or system fault. Feature knowledge originates from
the relationship between equipment operating characteristics
and faults accumulated in practice by experts and operators, and
is used to speculate, identify and verify equipment faults.

D. Prior Knowledge

Prior knowledge includes diagnosis standards, prediction
standards, information processing knowledge, and auxiliary
knowledge. The knowledge of methods, models and criteria used

for fault diagnosis is described as diagnostic criteria. Prediction
criteria cover models, methods and judgement criteria related
to fault prediction. Information processing knowledge involves
information acquisition, computation, analysis and feature ex-
traction, such as time series analysis, wavelet analysis and time-
frequency analysis. Auxiliary knowledge refers to background
and environmental knowledge related to diagnosis and process-
ing, such as fault behaviour of similar equipment, environmental
climate conditions and monitoring systems.

V. LARGE-SCALE FOUNDATION MODELS FOR PROGNOSTICS

HEALTH MANAGEMENT IN ICPS

Data-driven PHM methods have achieved significant success
in ICPS, which utilize advanced data analytics, machine learn-
ing, and deep learning techniques to achieve equipment failure
prediction, maintenance schedule optimization, and operational
efficiency improvement. However, these methods are typically
trained and optimized for specific ICPS scenarios and tasks,
leading to limitations in generalization, multi-task processing,
and cognitive capabilities. In industrial environments, hundreds
of core components require health monitoring and fault predic-
tion. It is impractical to develop separate deep models for each
device and subsystem. Furthermore, the working mechanisms
of data-driven PHM methods often function as “black boxes”,
lacking interpretability and transparency, which hinders fault
cause analysis and expert decision support.

LFMs have demonstrated outstanding zero-shot generaliza-
tion and powerful multi-task processing abilities, particularly in
time series analysis, which demonstrates strong data processing
capability. The success of LFMs offers an effective solution to
the above challenges. To promote the research and application
of LFMs in the ICPS-PHM field, this section illustrates and
analyzes in detail how to construct LFMs of PHM in ICPS
applications from four aspects.

A. Large-Scale Datasets in ICPS

Data in the ICPS is typically time-series data collected by
a variety of sensors, such as vibration signals, acoustic signals,
currents and voltages. In addition, video, image, and text data are
also used for equipment health monitoring, such as track defect
detection [57] and equipment crack monitoring [58]. Currently,
the PHM community has open-sourced dozens of datasets, such
as bearing failure datasets [59], aircraft engine degradation
datasets [60], three-phase motor failure datasets [61], industrial
production monitoring datasets [62], and wind turbine moni-
toring dataset [63]. As a classical fault diagnosis dataset, the
CWRU bearing datasets [64] contain only a limited number of
operating conditions and four different health levels, each level
encompassing only three failure levels. Depending on the op-
erating conditions, the MFPT datasets [65] collect bearing data
for three health states, as well as ten outer ring faults and seven
inner ring faults at different loads. The DIRG datasets [66] are
designed specifically for testing high-speed aerospace bearings
and contains three health states: inner ring fault, rolling element
fault, and health states. The C-MAPSS datasets [67] comprise
operational data from four different types of aircraft engines,
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consisting of 21 sensor signals used to predict the RUL of the
engines. This dataset includes four subsets, each with varying
numbers of operating conditions and fault scenarios.

Obviously, these datasets are small in the scale, which makes
it difficult to meet the training and optimization requirements of
LFMs. The emergence of the industrial Internet and the IoT has
led to the installation of numerous sensors on modern industrial
production equipment and various complex mechanical devices,
which enables real-time monitoring of various physical quanti-
ties of the system and timely detection of abnormal conditions.
As a result, most enterprises have collected a large amount of
industrial data and established data centers. This industrial data
may include various data such as sensor signals, images, and
videos, as well as a large amount of textual information such
as maintenance work orders and reports. Therefore, building
LFMs to effectively utilize these multi-source heterogeneous
data presents new challenges. In addition, these data are usually
in the hands of equipment operators and may involve trade
secrets, thus requiring the development of solutions that comply
with stringent privacy protection regulations. Federated Learn-
ing [68], [69], [70] is a distributed machine learning frame-
work with privacy-preserving and secure encryption features.
It allows decentralized participants to collaborate in building
machine learning models without disclosing private data, pro-
viding a viable approach to address data privacy and security
issues.

B. Downstream Tasks of LFMs of ICPS

Fault diagnosis and RUL prediction form the backbone of a
PHM system that can significantly improve maintenance prac-
tices, cost savings and asset management. These technologies
not only ensure timely and accurate problem detection, but also
provide valuable foresight for proactive decision-making and
strategic planning. Therefore, robust fault diagnosis and RUL
prediction technologies are essential to the safe operation and
development of ICPS. We review deep learning-based methods
for fault diagnosis and RUL prediction, as shown in Table I.

1) Fault Diagnosis for ICPS: Fault diagnosis is a key part
of ensuring the safe and reliable operation of industrial equip-
ment. With the development of IoT and AI technologies, deep
learning-based fault diagnosis methods have gradually become
a hotspot for research by its efficiency, accuracy and adaptivity.
According to the data environment, fault diagnosis applications
are categorized into four situations.

In ICPS fault diagnosis, vibration signals are usually con-
verted to spectral images to obtain more comprehensive data
features. Traditional conversion algorithms rely on a priori
knowledge, such as continuous wavelet transform and Fourier
transform. To fill this gap, Bai et al. proposed a spectral Markov
transition field algorithm that does not require a priori knowledge
of the parameters and is able to directly convert acceleration to
spectral images and input them to the CNN [71]. Besides fre-
quency domain transition, Kim et al. proposed a health-adaptive
time-scale representation embedded CNN, utilizing a multi-
scale convolutional filter to construct time-domain 2D input
signals, which enhances the feature extraction [72]. To enhance
the classification ability of the model, Xu et al. developed a
hybrid deep learning model based on CNN and gcForest [73].

This method uses CNN to extract fault features, and the forest
classification layer generates multiple decision trees to diagnose
faults based on the features of each sub-dataset. The weak nature
of incipient faults is a major challenge for fault diagnosis. Gao
et al. proposed to address the weak nature of incipient faults by
using an autoencoder to extract a feature representation of am-
plitude and phase information, and then augmenting the feature
representation with useful structural information by capturing
internal correlations [85].

In practice, machines operate normally most of the time, with
faults occurring only occasionally, so healthy data far outweighs
fault data. To address the data imbalance problem, Liu et al.
proposed a deep feature generation network fault diagnosis
method [79], which uses an attention mechanism to generate
features that supplement fault data. To prevent the generated
samples from being too similar to real samples and causing
model collapse, a pull-away function is integrated to design a
new objective function of the generator, ensuring the diversity
of the generated data. When only health data is available, the
model is unable to generate new data based on the existing data.
Pan et al. proposed a method to generate pseudo-data features
by combining fault indices [80]. The monitoring data and fault
indices of a machine change with the machine state, and this
property is utilized to construct 16-D time-domain fault indices
(i.e., kurtosis, variance, skewness, etc.) and generate data on
common fault types by modifying the time-domain fault indices.
In the case of zero fault data, Hu et al. proposes a fault diagnosis
model based on siamese convolutional autoencoder [82]. The
corresponding negative samples are first constructed for the
positive samples and then fed into the corresponding feature
extraction networks respectively, so that positive and negative
samples are far away from each other in the representation space,
thus avoiding the negative effect caused by the small samples.

Noise in ICPS is unavoidable and is typically caused by vari-
ous factors, such as sensor noise due to system errors or environ-
mental conditions, data noise from electromagnetic interference
or signal attenuation, and data loss and incompleteness. Noise
negatively impacts the accuracy and reliability of diagnostics.
To enhance the noise resistance of models, Su et al. proposed
a method to artificially create noise data [83]. This method
involves adding noise vectors to an autoencoder and using
maximum mean difference as the loss function to reconstruct
the original data. These reconstructed data are then used to
train the noise resistance capabilities of the CNN. In addition
to environmental noise, there are label noise in the data. To
address this issue, Zhang et al. proposed a deep residual network
based on an adaptive loss-weighted meta-network [110]. This
network consists of a classification network and a meta-network.
The meta-network is cross-trained with clean and noise labels
and records the gradients from training with clean labels. The
classification network is trained using noise labels and updates
its parameters jointly based on the gradients recorded by the
meta-network to build resistance to label noise.

Most existing fault diagnosis methods use non-Euclidean
structured data, focusing on the correlation between adjacent
sampling points, but they overlook the interactions between
components and equipment in ICPS. The introduction of graph
networks addresses this shortcoming [111]. Recently, an in-
creasing number of studies have transformed industrial data intoAuthorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on August 24,2024 at 16:22:59 UTC from IEEE Xplore.  Restrictions apply. 



272 IEEE TRANSACTIONS ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, VOL. 2, 2024

TABLE I
SEVEN DEEP LEARNING FRAMEWORKS FOR PHM IN ICPS

Fig. 5. Fault diagnosis framework based on GNN.

graph structures, considering the interactions between signals,
and utilizing graph neural networks (GNN) to model fault pat-
terns [112]. As shown in Fig. 5, GNN-based fault diagnosis is a
node or graph classification task [86].

Chen et al. proposed an interaction-aware graph neural net-
work for fault diagnosis [87]. An interaction-aware module was
designed for exploring the interrelationships among industrial
components, showing excellent reliability and robustness. In
addition to edge synthesis based on the similarity between data
points, Li et al. introduced a horizontally visual synthesis-based
fault diagnosis model [88]. For each data sample, this model
considers the data size as height and connects data nodes
when there are no higher nodes obstructing between them.
To address the issue of data noise interference, Wang et al.
proposed a causal-trivial attention graph neural network fault
diagnosis method [89]. This method learns causal subgraphs
through causal decoupling to mitigate the confounding effects
caused by noise, thereby improving the stability of the model.
To enhance the generalization performance of fault diagnosis
models in ICPS, Zhao et al. proposed a new semi-supervised

GNN that integrates labeled and unlabeled information of the
equipment [90]. This model first transforms 1-D data into
spectral signals using fast fourier transform, then constructs a
graph network from vector similarity-linked nodes, and finally
feeds the sample data graph into graph convolutional layers and
pooling layers for feature extraction and classification.

2) RUL Prediction for ICPS: Utilizing the historical data of
the equipment to check its status can be more agile and efficient
to detect the abnormal problems that may occur in operation. The
deep learning-based RUL prediction method has the advantages
of high accuracy, automation, robustness, which can signifi-
cantly improve the prediction and health management level of
industrial systems, and has a broad application prospect in ICPS.
The core elements of RUL prediction include the construction
of health indicators (HI) and the analysis of degradation trends.
In terms of HI construction, Peng et al. established a DBN-based
system fault feature representation method, taking the distance
between the degraded state and the failure state as HI [113].
Chen et al. proposed a deep convolutional self-encoder model
for adaptive construction of HI of rolling bearings [84]. Huang et
al. utilized a bi-directional LSTM network for adaptively extract-
ing, rotating, and fusing the wear features in the raw monitoring
signals to construct a computerized numerical control machine
HI [76].

To fully capture the time-series information of sensor signals,
Chen et al. first extracted time-frequency domain features from
the multi-channel signals collected by sensors [77]. Then, a slid-
ing window approach was used to extract wear data, which, along
with the time-frequency domain features, was modeled into a
LSTM network to adequately consider the time-series charac-
teristics of the data. To mitigate the adverse effects of sudden
bearing failures, Cao employed the empirical mode decomposi-
tion method to decompose the raw vibration signals and selected
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components based on the kurtosis criterion to reconstruct the
vibration signal [114]. After filtering out the noise, time-domain
and frequency-domain features were extracted from the recon-
structed vibration signals. Most data-driven RUL prediction
methods are unable to distinguish the contribution of different
sensor and time-step data, which reduces data utilization. In
this context, Song et al. proposed a time-series convolutional
network based on distributed attention [74]. The method is
based on a distributed attention mechanism that weights different
industrial sensors and time steps separately. Then, the temporal
convolution module with shared weights is used for feature
extraction of the time series.

To accurately estimate health status without identifying the
mathematical model of the system, Qin et al. proposed a
LSTM network with macro-micro attention mechanisms [78].
The method begins by calculating typical features of vibration
signals, such as mean, standard deviation, and kurtosis, etc.
These features’ principal components are then extracted using
isometric mapping. By integrating these features, the method
can effectively predict the health status of gear vibration signals.
To fully utilize degradation information, Wen et al. proposed a
hybrid RUL prediction method [75]. First, genetic programming
is used to integrate physical sensor data into a composite HI,
generating a clear nonlinear data-level fusion model. Next,
using the belief function theory framework, RUL prediction is
synthesized from each physical sensor and the developed HI as a
decision-level fusion method, significantly reducing uncertainty.
The success of RUL prediction relies on abundant operational
failure data. However, in practice, such data may be insufficient.
To address this issue, Zhang et al. employed a dual-channel
fused convolutional recurrent neural network with a generative
adversarial network to ensure high-quality data generation [81].
Considering the data privacy requirements and domain drift
phenomenon of distributed multi-client collaborative training,
Zhang et al. designed a multi-hop graph pooling adversarial
network to reduce domain differences through adversarial trans-
fer while achieving global modeling of input data [91]. Based
on this, a distributed federated learning-based model consis-
tency strategy was designed. This strategy dynamically allocates
model weights to improve generalization ability while ensuring
the privacy and security of each client local data.

Current data-driven PHM methods typically rely on large
amounts of high-quality labeled data for training. However, in
real industrial environments, the low incidence of equipment
failures results in prominent issues of data scarcity and im-
balance. Additionally, industrial data often contains noise and
outliers, posing challenges to the robustness of models. The
heterogeneity and complexity of the data further increase the
difficulty of model training and application. Variations in data
distribution across different equipment and operating conditions
hinder the direct transferability of models to new environments
or equipment.

Firstly, data augmentation techniques can be employed to gen-
erate more training data by transforming and expanding existing
data, thereby alleviating data scarcity issues [26]. Generative
adversarial networks can also be utilized to create high-quality

Fig. 6. Fault diagnosis framework based on Transformer.

synthetic data, further enriching the training dataset [115]. Sec-
ondly, active learning techniques can be adopted to interactively
select the most valuable samples for labeling with the help of
experts, reducing the dependence on large amounts of labeled
data [116], [117]. In cases of data imbalance, oversampling and
undersampling techniques can be used to balance the proportion
of positive and negative samples in the dataset, preventing
the model from being biased towards the majority class. Fur-
thermore, Few-shot Learning and transfer learning techniques
can be leveraged to train effective models even in scenarios
with limited data [118]. Multisource heterogeneous data fusion
is also a crucial approach to enhancing model performance.
By incorporating real-time data collection and online learning
techniques, models can be dynamically updated and adapted
to new environments and equipment, thereby enhancing their
multimodal learning capabilities.

C. Transformer for LFMs in ICPS

CNN and RNN are two of the most common architectures in
ICPS, but each has its own weaknesses. Firstly, CNN is unable
to capture relationships between targets, treat all pixels equally,
and lack precise target localization capabilities [119]. Addition-
ally, due to the local receptive field of convolutional kernels, a
large number of convolutional layers must be stacked to obtain
global information [120]. Secondly, RNN is not suitable for
parallel computing, leading to inefficient training on large-scale
datasets, and they still struggle to completely solve the problem
of long-distance dependencies, making it difficult to establish
effective connections over long sequences [121]. In contrast,
Transformers excel in modeling long-distance dependencies,
making them highly adapted to analyze and process various
sensor data in ICPS. Research on fault diagnosis based on
Transformers has now become a key research area, as illustrated
in Fig. 6.

Compared with CNN and RNN models, Transformer-based
fault diagnosis methods better extract temporal information
from sensor signals, construct long-range dependencies, and
significantly improve prediction accuracy [101], [102]. Wang
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et al. proposed a Transformer-based high-speed train wheel
wear prediction model [103], which effectively encodes both
global and local information by leveraging the strengths of both
Transformer and CNN. Fang et al. introduced an optimized
lightweight Transformer framework that achieves efficient and
accurate fault diagnosis while reducing computational complex-
ity [104]. Li et al. developed a fault diagnosis method based on
an improved attention mechanism, enabling the deep network to
focus on information-rich data segments and ignore those that
contribute less to the output [105].

Existing methods have difficulties in extracting long se-
quence temporal information from sensors, and Transformer-
based RUL prediction methods are an effective solution. Li et
al. proposed a convolutional dual-channel Transformer model
with time window concatenation [106]. This model can mine
long-term relationships and extract equipment degradation in-
formation from both the time and frequency domains without
relying on any loop structures. Zhang et al. proposed ual-aspect
self-attention based on transformer consisting of two encoders
that can simultaneously extract features from different sen-
sors and time steps [107]. The network is based only on the
self-attention mechanism, processes long data sequences more
efficiently, and adaptively learns to focus on the more important
parts of the input. Considering the lack of ICPS fault data,
Zhang et al. proposed a multilayer cross-domain transformer
bearing RUL prediction method [108]. The method is able to
capture simulated life cycle data through a dynamic model of
the degradation process, while considering the loss of mutual
information and retaining the generalized predictive knowledge
of the measured data. Ding et al. proposed a Transformer-based
multi-source domain generalization learning method [109]. The
method can extract generalised degradation feature representa-
tions from multiple fault datasets under different known operat-
ing conditions or equipment conditions to assist the forecasting
task in real application scenarios.

Although Transformer have achieved great success in ICPS,
it still have some limitations that need to be addressed. Firstly,
Transformer models are primarily designed for processing static
input data such as text, and while they can incorporate temporal
information through positional encoding, they do not directly
consider time information. Therefore, when dealing with indus-
trial time-series data, Transformers may struggle to fully learn
the continuous temporal relationships in the data. Secondly,
Transformer models may perform poorly when handling noisy
industrial data. In real industrial production, noise in the data
is inevitable, and Transformer models may not be sufficient
to effectively manage this noisy data. Thirdly, industrial data
typically includes various types of sensor data and a large
amount of textual information, and Transformers generally find
it challenging to simultaneously process extensive sensor data
and heterogeneous data from multiple sources.

D. Knowledge-Enhanced LFMs for ICPS

A large amount of mechanistic, data and empirical knowledge
has been accumulated in ICPS, which contributes to improve
the interpretability and reliability of the model and supports
subsequent model optimization. However, due to the different

Fig. 7. The architecture of knowledge engineering oriented intelligent
fault diagnosis.

forms of presentation, this knowledge has not been adequately
inherited and learnt in data-driven methods. To address this
issue, scholars have proposed a series of knowledge-enhanced
PHM studies for ICPS, such as fault dictionaries, fault trees,
and Bayesian networks. The knowledge engineering oriented
intelligent fault diagnosis system architecture is shown in
Fig. 7.

Fault dictionary is a method of systematically summarizing
information about equipment failure modes and characteristics,
similar to dictionary form, presented in tabular form [122].
These fault dictionaries can be simple descriptive relationships
between fault modes and fault features, complex nonlinear rela-
tionships, or even fuzzy relationships between equipment fault
modes and their feature vectors. Fault dictionary-based diag-
nosis methods have the advantages of computational simplic-
ity, well-defined relationships, and applicability to both linear
and nonlinear systems, making them very suitable for PHM
of ICPS equipment. Fault tree is a method that describes the
logical relationship of events in a system through a causality
tree diagram [123]. This method uses three elements: logic
gates, input events, and output events to describe the structural
relationships of complex equipment. Causality tree diagram can
visually analyze the complex structure of the system and is very
suitable for ICPS. Bayesian network analyzes the dependencies
and correlation strengths between variables by means of joint
probability distributions of the set of variables, and is suitable for
expressing and reasoning about equipment uncertainty failure
problems in ICPS [124].

Full-cycle PHM for ICPS includes activities such as design
verification, manufacturing and testing, delivery and training,
and operation and maintenance control. Managing and sharing
vast amounts of information during the upstream and down-
stream phases of the lifecycle is a challenge [125]. Multiple
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Fig. 8. Knowledge graph construction for ICPS.

sources of information and heterogeneous data pose significant
challenges to the development of LFMs of PHM in ICPS.
Heterogeneous data from various equipment and subsystems
can be efficiently organized, stored and queried using knowledge
graphs. This enables the construction of a unified data center that
integrates information from multiple equipment, offering exten-
sive application potential in ICPS scenarios such as aerospace,
automotive, high-speed rail, and power systems [92].

Knowledge graph construction are generally categorized into
top-down and bottom-up approaches [93], [94]. The top-down
approach defines the framework of the domain knowledge sys-
tem. The bottom-up approach enriches the knowledge content
within the framework, which ensures the professionalism and
accuracy of the knowledge system and covers the huge amount
of data in the ICPS. Given the characteristics of knowledge and
data in ICPS, the construction of knowledge graphs typically
combines both approaches [95]. The construction of knowl-
edge graph in ICPS includes ontology construction, knowledge
extraction, knowledge fusion, and knowledge storage, and its
process is shown in Fig. 8.

Knowledge graph-based PHM can be mainly divided into
methods combined with Bayesian networks and methods com-
bined with graph neural networks. The Bayesian network model
has a network structure similar to the semantic web and the
knowledge graph, and has the advantages of classification dis-
crimination and quantitative analysis at the same time, which is
an effective tool for assisting reasoning and diagnosis query [96],
[97]. On the basis of constructing the graph structure through the
relationship between entities in the knowledge graph, the graph
neural network method is used to carry out fault cause analysis
and fault localisation with significant advantages.

For fault analysis, Liu et al. proposed a new knowledge
graph embedding and knowledge reasoning approach for fault
diagnosis knowledge graphs [98]. The model explicitly learns

an entity representation of the knowledge graph in an end-to-end
learning mode, enabling automatic analysis of accident causes.
For fault localisation, Liu et al. leveraged a priori knowledge to
associate defects in bolt pairs in transmission lines with semantic
objects [99]. This approach initialises defect nodes by features
extracted from the joint region of the bolt parent pair in the
image and initialises semantic object nodes by features obtained
from the semantic object detection region in the image. Han et
al. proposed a novel relational model-oriented steel production
line equipment FD knowledge graph (SPLEFD-KG) based on
global contextual information [100]. The method introduces
a graph neural network to compute the embedding vectors of
new entities outside the SPLEFD-KG in order to successively
fill in the missing entities, thus information-rich and accurate
fault-related knowledge.

Knowledge graphs hold tremendous potential in enhancing
digital manufacturing, equipment, and project lifecycle man-
agement [126]. On one hand, a knowledge graph itself serves as
a knowledge base, offering advantages such as visualization and
ease of querying. On the other hand, knowledge graphs excel in
expressing relational connections. By leveraging the semantic
expression capabilities of knowledge graphs, it is possible to
construct graph structures embodying physical or information
coupling relationships, thus exploring data and information in
unique ways. Combining industrial process knowledge with a
data-driven methods, embedded in the model through rules or
constraints, can further improve the interpretability and of the
model. Rules from expert knowledge and historical experience
can further enhance the credibility of decision making in LFMs.

VI. OPPORTUNITIES AND CHALLENGES FOR LFMS IN ICPS

LFMs have the potential to ensure the stable operation and
sustainable development of ICPS by enhancing PHM. This
survey provides a detailed overview of the overall advantages
of LFMs in ICPS. We describe the critical challenges that must
be addressed to ensure safe deployment, as LFMs of PHM will
operate in particularly high-risk environments compared to the
LFMs in other fields.

A. Paradigm Shifts With LFMs in ICPS

1) Generalizability: LFMs can learn and extract widely ap-
plicable features from vast amounts of data, ensuring robust
performance across various application scenarios and working
conditions. Traditional models often optimize for specific sce-
narios and lack the flexibility required in the diverse environ-
ments encountered in ICPS. In contrast, LFMs can perform joint
learning on different types of data, establishing more universal
prediction and analysis capabilities that apply to a wide range
of conditions and equipment types. Additionally, LFMs with
strong generalization capabilities can better handle emerging
fault patterns and unknown operating states, crucial for enhanc-
ing system robustness and stability.

2) Multimodal Support: One of the critical advantages of
LFMs is the ability to support multimodal data. In ICPS, data
sources are diverse, including sensor data, image data, audio
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data, and text data, each containing critical information. Tra-
ditional single-modal models often fail to fully utilize these
heterogeneous data sources. In contrast, LFMs powered by
AI techniques, can integrate multimodal data to achieve more
comprehensive and accurate health management. For example,
in monitoring equipment operation, sensor data can provide
real-time status information, image data can assist in detecting
visual changes, audio data can capture abnormal sounds during
operation, and text data can log operational and maintenance
records. By integrating these different data types, large-scale
foundational models can develop a more holistic understanding
of equipment operating conditions, enhancing the accuracy of
fault detection and prediction. Multimodal support not only im-
proves data utilization but also enhances the model’s adaptability
and application range, providing robust technical support for
ICPS health management.

3) Reliability and Efficiency: LFMs accurately predict equip-
ment failures by analyzing historical and real-time data, enabling
proactive maintenance and preventing unplanned downtime,
thereby significantly improving system reliability. Predictive
maintenance based on LFMs can optimize maintenance sched-
ules, reducing unnecessary inspections and maintenance efforts,
saving both human and material resources. Additionally, LFMs
can monitor and optimize key parameters in the production
process in real-time, enhancing process stability and product
quality. In terms of efficiency, LFMs can intelligently manage
resource allocation by dynamically adjusting resources accord-
ing to the actual operating conditions and production demands,
maximizing resource utilization. For instance, in production line
scheduling, the models can optimize scheduling plans based on
equipment status, reducing production wait times and resource
wastage.

B. Challenges of LFMs in ICPS

1) Data Quality and Security: The variability of ICPS sce-
narios reduces data reusability, while LFMs require a large
amount of data for effective training, which poses a great chal-
lenge for data collection and preprocessing. ICPS generate di-
verse types of data, including sensor readings, operational logs,
and environmental data. These data often contain noise, missing
values, and outliers that can affect model training and prediction
accuracy. Data cleaning and preprocessing are time-consuming
and resource-intensive, and cannot be overlooked. Furthermore,
ICPS data typically includes sensitive information and com-
mercial secrets, so strict data privacy and security measures
must be taken. Data must be encrypted during transmission and
storage to prevent leaks and tampering. As cyber-attacks become
increasingly sophisticated and frequent, ICPS must implement
robust defense mechanisms to ensure data security. This involves
not only technical safeguards but also strict management policies
and emergency plans. Ensuring data quality and security is
crucial for the reliability and stability of ICPS.

2) Model Interpretability and Trustworthiness: Although
LFMs are excellent at handling complex data and predicting
potential faults, their “black-box” nature makes the decision-
making process difficult to interpret. Engineers and managers

need to understand the basis for model predictions in order to
make sound maintenance and operational decisions. The lack
of interpretability not only reduces model acceptance, but also
hampers the ability to quickly identify the root cause of predic-
tion errors, affecting the accuracy and timeliness of decisions.
Model predictions must be highly reliable, especially in ICPS
applications involving safety and high risk. To enhance model
trustworthiness, extensive testing and validation are necessary,
along with the establishment of stringent evaluation standards.
Moreover, LFMs need self-diagnosis and updating capabilities
to adapt to changing operating conditions and emerging faults.

Extensive knowledge about equipment structure, fault mech-
anisms, and historical data has been accumulated in ICPS. This
knowledge can be transformed into rules or constraints and
embedded into LFMs to enhance the transparency of predictions.
By leveraging historical data for model validation and calibra-
tion, the consistency between model predictions and actual con-
ditions can be ensured, thereby improving model interpretability
and reliability. Additionally, integrating expert knowledge and
rules derived from historical experience can further enhance the
decision-making credibility of LFMs.

3) Development Costs: Developing and deploying LFMs
typically requires substantial computational resources, includ-
ing high-performance computing platforms and GPU clusters,
resulting in high hardware costs and energy consumption. The
training and optimization processes are complex, requiring spe-
cialized technical personnel for debugging and maintenance,
which increases labor costs. In addition, the process of data
collection, cleaning and labelling is time-consuming and expen-
sive, especially in ICPS where data must often be sourced from
multiple heterogeneous origins and undergo complex prepro-
cessing. To ensure the robustness and reliability of the models,
extensive testing and validation are required, further escalating
development costs. Maintaining and updating LFMs to adapt
to changing operating conditions and emerging fault patterns
is also a long-term, resource-intensive process. Although cloud
computing and distributed computing can alleviate some of the
resource pressures, the high development costs remain a major
obstacle to the adoption of LFMs of PHM in ICPS. Effectively
managing these costs and finding cost-efficient solutions are
critical challenges that need to be addressed in this field.

VII. CONCLUSION

By collecting and analyzing data between connected ma-
chine clusters, Industry 4.0 offers unprecedented prospects for
PHMP, but it also brings genuine challenges to the development
and application of modern PHM. Existing PHM methods are
mostly data-driven, facing issues such as insufficient model
generalization capability, poor interpretability, and lack of trust-
worthiness. LFMs with cross-domain knowledge are equipped
with powerful generalization and multitasking capabilities to
meet the reliability and generalization requirements of ICPS.
Therefore, this survey provides a comprehensive overview of
the technical characteristics and current progress of LFMs. The
literature review reveals a lack of research on LFMs of PHM
in ICPS, and currently, there are no viable solutions to build
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LFMs of PHM specifically for ICPS. This survey explores how
to construct LFMs of PHM for ICPS from three key aspects:
datasets, models, and algorithms. Finally, it attempts to examine
the challenges associated with LFMs of PHM modeling from
a broader perspective, aiming to offer valuable insights and
guidance for future research in ICPS.
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