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Abstract—Graph neural networks (GNN) are good at captur-
ing the intricate topologies and dependencies among components
and are outstanding in fault diagnosis tasks of complex industrial
process. Bias substructures consisting of irrelevant sensor signals
and noise data are simpler compared to causal substructures
consisting of fault signals, and GNNs tend to utilize the letter
to quickly achieve low loss. However, spurious correlations in
the bias substructures will mislead predictions. To address this
issue, this study takes the disentanglement of causal and bias
substructures as the key to improve model stability. A causal
disentangled graph neural network (CDGNN) is proposed. First,
sensor signals are transformed into graph data employing an
attention mechanism to capture the interactions between them.
Then, a causal disentanglement learning module is designed
to extract causal subgraphs from input graphs. Finally, causal
subgraph features from different source machines are aggregated
to form a complete graph representation. Experimental results
on two complex industrial datasets indicate that CDGNN is an
effective and stable method for fault diagnosis.

Index Terms—Complex industrial process, Fault diagnosis,
Graph neural networks, Causal disentanglement.

I. INTRODUCTION

FAULT diagnosis is one of the key techniques for prognos-
tics and health management, serving a vital function in

guaranteeing the secure and efficient operation of complex sys-
tems as well as reducing maintenance costs [1]. Deep learning-
based intelligent fault diagnosis techniques can adaptively
extract features from vibration signals, providing superior
diagnosis results while significantly saving time and effort.
Data-driven fault diagnosis methods has become a widely
adopted approach to address challenges posed by increasing
complexity of industrial systems [2].
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In industrial systems, numerous sensors are utilized for the
implementation of variable control, quality monitoring control,
and safety control. Their locations are carefully designed based
on the functional causal relationships between equipment, pro-
cess components, and subsystems. The potential relationships
among these sensors form an implicit interaction network,
which belongs to non-Euclidean data. The majority of existing
fault diagnosis methods employ gridded data, thereby failing
to take into account the topology and interaction relationships
between sensors. Learning and utilizing the topological struc-
ture and interaction relationships between sensors is beneficial
to grasp the root causes and propagation process of faults [3].

Considering that each sensor measurement is represented
as a node and implicit interactions between these nodes are
represented as edges, it is feasible to describe the implicit
interaction network constituted by sensors can be described
by a structural attribute graph. In this way, fault information
and propagation processes are stored in this graph. Naturally,
different faults correspond to different graph structures. Graph
neural networks (GNN) [4] are capable of effectively mod-
elling and analysing graph data using the inductive biases as-
sociated with non-Euclidean representation, and have achieved
outstanding results in fault diagnosis tasks [5].

The core of fault diagnosis task is the identification of fault
categories, and GNN-based fault diagnosis on multiple sensor
signals is a graph classification task [6]. Graph classification
is commonly based on identifying the key substructure instead
of analyzing the whole graph [7]. For example, the functions
and properties of proteins are largely determined by the amino
acid series and 3D structure, rather than the structure of entire
protein [8]. Ideally, GNN only extracts information about key
substructures and makes correct predictions.

Because of structural interactions of components, faults will
propagate through industrial processes and even affect the
operation of other equipment, causing readings from multiple
sensors to deviate from normal. Correlation analysis is a
crucial technique for fault detection and process monitoring
because it reveals the sensors associated with a fault. However,
it can only analyze the correlation of data and is susceptible
to noise and irrelevant data. In GNN-based fault diagnosis,
the substructure consisting of nodes whose feature inputs are
fault signals is a key subgraph for determining the type of
fault. But more irrelevant sensor signals and noise data will
interfere with the model to learn key fault information.

To effectively establish the graph structure for different
faults and to achieve stable prediction by GNN using only key
subgraphs, we model the GNN-based fault diagnosis according
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to the causal theory. Based on the causal theory, data consists
of inherent causal and confounding (i.e., bias) information.
Causal learning is the process of extracting causal information
from data and using its causal invariance to make predictions
[9]. Fault signals reflect the state of equipment, correlate with
the type of fault, and are regarded as causal variables. In
contrast, irrelevant sensor signal and noise signal are regarded
as bias variables. When constructing the graph, the causal
substructure corresponding to true label consists of causal
variables, whereas bias variables constitute meaningless bias
substructures that lead to biased graphs. In addition, noise
data vary under different working conditions, but fault signals
corresponding to the same fault are usually similar.

For large industrial system with hundreds of sensors, such
as a nuclear power system [10]. Even in the event of a fault,
only a few sensors show anomalous readings and most are
not affected. These irrelevant sensors form a simpler bias
substructure than causal substructure. Unfortunately, GNNs
tend to utilize this simple substructure to quickly achieve low
loss [11]. However, the bias substructure is independent of
fault, which will result in large prediction biases. To improve
the robustness and reliability of GNN-based fault diagnosis
methods, it is necessary to solve following challenges: 1) How
to identify causal and bias substructures in a sensor correlation
graph? 2) How to disentangle and extract causal substructures
from input graphs? The causal substructures are commonly
determined by the global properties of the whole graph. It
is essential to build relationships between each graph before
attempting to extract the causal substructures.

Based on above analysis, a causal disentangled graph neural
network (CDGNN) framework for fault diagnosis in complex
industrial process is proposed. Based on the causal relation-
ships inherent to GNN-based fault diagnosis processes, this
investigation employs causal theory to determine causal and
bias variables in graphs, and then disentangle and extract
causal substructures from graphs. GNN utilizes only the infor-
mation of causal substructures for prediction, which mitigates
the confounding effect of bias substructures and improves the
stability of the model. The main contributions as:

1) We emphasize the stability and robustness issue of GNN-
based fault diagnosis task. From the causal perspective,
this issue is attributed to the confounding effect of the
bias substructures.

2) We introduce a novel CDGNN strategy for fault diagno-
sis. First, the sensor signals are constructed into graph
data through attention mechanism. These graphs are then
causally disentangled to extract information from causal
subgraphs, including three steps: causal estimation, causal
disentanglement and causal aggregation.

3) Experimental results on two complex industrial process
datasets show that CDGNN provides superior diagnosis
results with better robustness and stability than current
state-of-the-art methods.

The rest of the article are organized as follows. Problem
formulation and preliminaries are presented in Section II.
Section III details the proposed CDGNN. In Section IV, We

conducted case studies on two complex industrial datasets.
Finally, conclusions and discussion in Section V.

II. PROBLEM FORMULATION AND
PRELIMINARIES

A. Problem Formulation

1) Sensor Signal Segments: In industrial systems, numerous
sensors are used for system monitoring and process manage-
ment, these sensor signals form n raw measured variables. For
sensor signals over a period of time t, it can be represented
as si = (s1i , s

2
i , .., s

t
i) ∈ S. Signal segments with large spans

are usually difficult to handle, so it is necessary to obtain
multiple signal segments through window sliding, which can
be represented as wj = (st−m+1

i , ..., sti) ∈ Ω. m is the
size of sliding window, which is determined according to the
stability of sensor signals. These sensor signal segments are
served as inputs for constructing graph structure.

2) Input Graph: A graph can be defined as G = (V,E),
where V and E are the sets of nodes and edges, respectively.
eij ∈ E donates an edge between node vi and vj . X ∈ Rn×dn

and Xe ∈ Rc×dc denote nodes and edges attribute, respec-
tively. In this study, the node features xj are the attribute of
sensor signal segments wj , and the edge attribute Xe are learnt
through an attention mechanism. The structure information
of a graph can be described by an adjacency matrix A ∈
Rn×n, n = |V |. The GNN-based fault diagnosis is a graph
classification task: given a set of graphs {G1, G2, ..., GN} ∈ G
to identify fault types {y1, y2, ..., yN} ∈ Y .

B. Graph Neural Networks

GNN captures features of graphs by aggregating and updat-
ing them among nodes through a message passing mechanism,
and iteratively updates the results of message passing in the
node representation [4]. The k−th message passing as:

a
(k)
i = Aggregate(k)

({
h
(k−1)
j : vj ∈ N (vi)

})
h
(k)
i = Update(k)

(
h
(k−1)
i ,a

((k))
i

) (1)

In the k−th message passing, Aggregate(k) generates inter-
mediate result a(k)i by aggregating the representations of the
set of neighbors N (vi) of node vi , and Update(k) updates
the representation h

(k)
i of node vi by combining a

(k)
i and

representation h
(k−1)
i of node vi in the last round. The initial

features of node vi is h
(0)
i = xi.

In the graph classification task, the graph representation
needs to be obtained first and then GNN classifies labels
based on it. A readout function freadout to get the graph
representation hG is defined as:

hG = freadout

({
h
(k)
i | vi ∈ G

})
. (2)

C. Causal Learning

Traditional machine learning primarily focuses on the cor-
relation at the data level, while causal learning attempts to
identify causal relationships from data, i.e., how changes in
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one event or variable result in changes in another event or vari-
able. According to causal theory [12], data consists of inherent
causal information and confounding (i.e., bias) information.
Causal learning involves extracting causal information from
data and using its causal invariance to make predictions.

Image classification models are susceptible to interference
from bias information (e.g., background) that has spurious
correlation with target, resulting in poor robustness of model.
To solve this problem, [13] recognized the parts composed
of causal and bias information as causal and bias substruc-
tures, respectively, and then proposed a disentangled features
augmentation method to eliminate the spurious correlation
between bias substructure and target. [14] analyzed the causal
effects in graph classification tasks, and proposed a causal
attention learning (CAL) strategy to utilize a backdoor adjust-
ment method to assist model in eliminating spurious correla-
tions, which enhances the capacity of GNN to generalize in
the Out-Of-Distribution (OOD) environment.

Causal learning indeed provides a powerful tool for many
tasks in machine learning. In image recognition, causal in-
formation in images is obvious, consistent and interpretable.
However, in fault diagnosis, fault signals, irrelevant sensor sig-
nals, and noise signals are highly coupled. Different working
conditions of machines introduce data biases, which may result
in overfitting of fault diagnosis models and fail to generalize
to other machines. To address this challenge, [15] proposed a
causal consistency network (CCN) for mining constant causal
data in individualised equipment. However, this method can
only reduce data bias caused by working conditions, and
cannot solve the interference of irrelevant sensor signals.

In fault diagnosis based on sensor signals, the causal infor-
mation is invariant, i.e., fault signals. Irrelevant sensor signals
and noise data will interfere with the model to extract fault
features and are regarded as bias information. GNN-based fault
diagnosis methods are able to learn the topology and interac-
tions of equipment, but nodes with irrelevant sensor signals
as feature inputs will cover fault signals in message passing.
Environmental and operational noise can also make the same
fault show different symptoms on different equipment. The
majority of current causal learning methods are designed for
image data and are not applicable to graph data. We identify
nodes whose features are fault signals as causal nodes, which
form causal substructures, and propose CDGNN to extract
causal substructures from graph data.

III. PROPOSED FAULT DIAGNOSIS METHOD
In this section, we analyse causal relationships in the fault

diagnosis according to causal theory and develop a structural
causal model. To reduce the confounding effect of bias fea-
tures, we employ deep networks to mine the causal information
in signals, thereby facilitating more stable fault diagnosis. To
meet the above requirements, CDGNN is proposed, which con-
tains graph construction and causal disentanglement learning.
The framework is shown in Fig. 2.

A. Attention Mechanism for Graph Construction
Industrial equipment state data is collected through nu-

merous sensors, and the interaction pairs between sensors

Fig. 1. Structure Causal Model in GNN-based Fault Diagnosis.

form an implicit sensor network. Considering each sensor as
a node, this implicit network can be conceptualized as an
explicit graph structure. Since the interaction between nodes
varies with the type of faults, traditional methods such as
correlation or K-nearest neighbour (KNN) are not effective
in constructing sensor correlation graphs [5]. To accurately
capture the physical topology of industrial systems from the
data and differentiate various fault types, we employ an
attention mechanism to automatically learn graph structure.

The sensor signals are divided into multiple equal-length
segments X = (x1,x2, ...,xn) as node features. The edge
attribute between nodes xi and xj is calculated to represent the
interaction between them. Specifically, we execute the Pear-
son correlation coefficients [16] to calculate the correlation
coefficient score. For feature matrix x = (x1

i , x
2
i , ..., x

m
i ), the

learned correlation coefficient pij is defined as:

pij = f(xi, xj) (3)

where f(·) is Pearson function. A large value of pij indicates
that there is a strong correlation between two nodes and the
edges between these nodes should be retained, otherwise they
should be removed. We use attention-based dropout layer
(ADL) [17] to filter the correlation coefficients and eliminate
redundant interactions to obtain the input graph.

e = ADL(p)

pij = max{0, pij − τ(pij)}
(4)

where τ(·) is the threshold used to distinguish the strength of
the correlation and all pij are below the threshold τ(pij) will
be truncated to 0. The correlation scores e ∈ Rn are used as
edge weights Xe and are involved in graph message passing.

The attention mechanism is employed to construct graphs,
which can adaptively learn its structure and thus more ac-
curately distinguish the graph structure of different faults. A
larger correlation score between two nodes indicates a stronger
physical association between the corresponding sensors.

B. Causal View on GNN-based Fault Diagnosis

We excavate the causality inherent to data generation and
prediction process in GNN-based fault diagnosis to understand
inherent mechanism of graph classification. To this end, we
examine the causal relationships between the eight variables
and construct a structural causal model (SCM) [9]. The SCM
in GNN-based fault diagnosis is presented as Fig. 1, where
each link represents a causal relationship.
• C → G ← B: using sensor signals for fault diagnosis,

where causal feature C are fault signals of machine M, and
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bias feature B are irrelevant sensor signals and noise data
determined by the working condition DM .
• G → Gc → Y , and C → Gc → Y : fault label Y is

determined by causal subgraph Gc, which is composed of C.
• C → Y : causal feature C is the sole determinant of fault

label Y. For instance, if C represents sensor signal generated
when a fault occurs, then Y is the corresponding fault type.
• B → G → Ŷ: bias feature B interferes with the

prediction, resulting in the predicted label Ŷ is obtained from
the graph G to differ from true fault label Y.
• C L9999K B: fault signals (i.e., causal feature) and

irrelevant sensor signals (i.e., bias feature) and noise are
captured simultaneously. These signals are highly coupled and
have spurious correlations that cannot be directly observed.

C. Inverse Probability Weighing

Compared to the causal substructure, the bias substructure
is simpler and GNN can utilize the bias substructure to
rapidly reach low loss. Therefore, GNN tends to utilize bias
substructure when graphs exhibit bias [18]. However, the
prediction via bias substructures is unstable. According to the
SCM, we can identify two backdoor paths that may lead to
spurious correlations between B and Y: (1) B → G → Y
(2) B L9999K C → Y . Confounding effects caused by bias
feature will reduce the stability of predictions through these
spurious correlations. Therefore, these two spurious paths must
be blocked, and we propose to debias GNN from a causal view.
• C ← G → B and C → Y : to block path (1), it is

necessary to disentangle C and B from G, with all subsequent
predictions being based solely on C.
• C L99×99K B: explicitly blocking path (2) is challenging.

The path from C to Y is unchanging, but we can make C and
B uncorrelated, achieving causal disentanglement.

In complex industrial fault diagnosis, causal and bias fea-
tures cannot be directly observed, making it difficult to explic-
itly disentangle C and B. Fortunately, causal theory provides
a possible solution [19]: we can get rid of the backdoor path
by using do-calculus on the causal variable C to estimate
Pm(Y |C) = P (Y |do(C)). Backdoor adjustment as a causal
intervention tool is theoretically sufficient for estimating causal
relationships [14] between C and B, but it involves summing
probabilities over B. If the number of possible values of B
is very large, the summation will be very computationally
intensive. To address this issue, we employ the inverse prob-
ability weighing (IPW) [20] approach to reweight graph data,
which avoids the problem of probability summation over B.
According to Bayes rules, the IPW can be represented as:

P (Y |do(C)) = P (Y |C)

=
∑ P (Y |C,B)P (B)P (C|B)

P (C|B)
(Basyes Rule)

=
∑ P (Y |C,B)

P (C,B)
(IWP )

(5)

P (Y |(C,B)) denotes the given conditional probability of C
and B, and P (B) donates the prior probability of B.

D. Causal Disentanglement Learning

To eliminate spurious correlations, we propose causal dis-
entanglement learning strategy. Firstly, a mask generator is
designed to mask edges of the input graph, thereby obtaining
two distinct subgraphs: a causal subgraph and a bias subgraph.
Subsequently, two independent GNN modules are trained for
encoding these subgraphs into their respective representations,
which are then disentangled. Finally, these representations are
trained to extract causal features, eliminating the spurious
correlations. The overall process is shown in Fig. 3.

1) Causal Estimate: Given a graph G = (A,X), where A is
adjacency matrix, and X is node features matrix. We estimate
the importance of edge(i, j) in the causal subgraphs using a
multi-layer perception (MLP) connecting feature matrix xi of
node vi and feature matrix xj of node vj .

αij = MLP ([xi, xj ])

cij = ReLU(αij) ∈ (0, 1)
(6)

αij is the importance of edge(i, j), and cij indicates the
probability that edge(i, j) belongs to a causal subgraph.

Naturally, the probability of edge(i, j) belongs to a bias
subgraph is: bij = 1 − cij . The causal and bias masks can
be denoted as Mc = [cij ] and Mb = [bij ], respectively.
Finally, we disentangle G to obtain the causal subgraph Gc =
{Mc ⊙ A,X} and bias subgraph Gb = {Mb ⊙ A,X}. In
summary, mask allows GNN to distinguish different structural
information of graphs, enabling GNNs trained on different
subgraphs can extract features from different parts of graphs.

2) Causal Disentanglement: How to ensure Gc and Gb are
causal and bias subgraph, respectively? Uncertainty properties
of bias graphs have diverse representations and are easier to
extract relevant features [13]. Inspired by this, a pair of GNNs
(gc, gb) with linear classifiers (Cc, Cb) are simultaneously
trained in our approach. (1) Based on the fact that bias
substructures are easily to grasp [11], we employ a bias-
aware loss function to train a bias GNN model (gb, Cb); (2)
Correspondingly, a causal GNN model (gc, Cc) on graphs that
are difficult to learn for the bias GNN.

As illustrated in Fig. 3, causal and bias subgraphs are
embedded into causal and bias representations zc = gc(Gc; γc)
and zb = gb(Gb; γb) by the GNN gc and gb, respectively. γ
are parameters of GNNs. The classifiers Cc and Cb leverage
representation vectors zc and zb to predict the target label y,
respectively. To train gb and Cb to extract bias features, we
employ generalized cross-entropy (GCE) [21] to enhance the
bias of bias GNN and classifier.

GCE(Cb(zb;αb), y) =
1− Cy

b (zb;αb)
q

q
q ∈ (0, 1] (7)

where Cb(zb;αb) and Cy
b (zb;αb) represent the softmax out-

put of bias classifier and the probability that belongs to y,
respectively. α are parameters of Cb. The hyperparameter q is
used to regulate degree of bias.

Bias features are normally easier to learn, so Cy
b of the

biased graph is higher than unbiased graph. Thus, the models
gb and Cb trained with GCE can pay attention to bias features
and obtain bias subgraphs. For high confidence samples, the
standard cross entropy (CE) [22] will yields lower loss. Thus,
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Fig. 2. The framework of proposed Causal Disentangled Graph Neural Network (CDGNN).

Fig. 3. Causal Disentanglement Learning in GNN.

we train gc and Cc as causal extractor by CE loss. In this way,
we can get the causality scores for each graph:

W (z) =
CE(Cb(zb), y)

CE(Cc(zc), y) + CE(Cb(zb), y)
(8)

A large value of W indicates that the subgraph is a causal
subgraph. Based on the above analysis, we reweight the input
graphs to achieve inverse probability weighting on them.

Ld = W (z)CE(Cc(z), y) +GCE(Cb(z), y) (9)

where Eq. 9 is defined as causal disentanglement learning loss.
It reweights the training losses to train gc and Cc towards

learning causal information and push causal subgraphs to be
stable and invariant in prediction.

Algorithm 1 CDGNN
Input: Dataset G, GNN modules (gc, gb) and parameters

(γc, γb), classifiers (Cc, Cb), hyper-parameter λ
Output: The trained parameters
1: for sampled K graphs {Gk

= (Ak, Xk)}Kk=1 do
2: compute the importance αij and probability of causal

subgraph cij ← Eq. 6 for all edges of Gk

3: get causal edge mask Mk
c based on cij

4: get causal subgraph Gk
c = {Mk

c ⊙Ak, Xk}
5: get causal embedding zkc = gc

(
Gk

c ; γc
)

6: get non-causal embedding zkb = gb
(
Gk

b ; γb
)

7: train bias extractor GCE(Cb(z
k;αb), y

k)← Eq. 7
8: train causal extractor CE(Cc(z

k), yk)
9: compute causality score W (zk)← Eq. 8

10: causal disentanglement loss Lk
d ← Eq. 9

11: total causal disentanglement loss LD =
∑K

k=1 Lk
d

12: get final graph representation R← Eq. 10-12
13: aggregation classification loss LAC ← Eq. 13
14: total loss L = LAC + λLD

15: end for

E. Aggregation Classification Training

Sensors are susceptible to noise data, which varies de-
pending on the working conditions. Thus, even the same
fault behaves differently on different equipment. To mitigate
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the interference of noise data, we aggregate causal subgraph
representations from different working conditions into a final
global graph representation. First, we employ SAG-Pooling
[23] as a readout function freadout to obtain representation of
the k−th causal subgraph Gk

c .

rk = freadout(G
k
c ) (10)

There are differences in causal subgraph representations
from different working conditions d ∈ DM , so we propose a
weighting function to computes the weights βk of subgraphs.

wk =
∑
k∈K

−→p · ReLu (fa (rk))

βk =
exp(wk)∑

k∈K exp(wk)

(11)

where wk is the importance coefficient of representation are
measured by an attention vector −→p . βk is the normalized
importance coefficient obtained from the softmax function.

Aggregating subgraph representations under different work-
ing conditions yields a final global graph representation R.

R =

K∑
k=1

rkβk (12)

The GNN-based fault diagnosis on multiple sensor signals
is a graph classification task. We use multiple fully connected
(FC) layers to process the graph feature information extracted
by CDGNN, and output the probabilities of different fault
categories using a softmax classifier in the last layer. There-
fore, the objective function for aggregation classification can
be written as:

LAC = −
N∑
j=1

yj log qj(w|g) (13)

where w are parameters of the model and qj represents the
probability that the predicted target belongs to fault type j.
Thus, the total loss of CDGNN can be described as the sum
of losses:

L = LAC + λLD (14)

The hyper-parameter λ determines the strength of causal
disentanglement learning, LD =

∑K
k=1 Lk

d . A comprehensive
explication of the implementation of CDGNN in Algorithm 1.

IV. CASE STUDY

This section presents an evaluation of the effectiveness of
CDGNN in addressing fault diagnosis in complex industrial
process. The experimental results and subsequent analysis
demonstrate the superiority and efficacy of CDGNN in this
domain compared to current state-of-the-art methods.

A. Data Description

1) Three-phase flow facility (TFF): TFF [24] is a simulated
pressurized system to provide controllable and measurable
flows of air, water and oil, refer as Fig. 4. The system
comprises 24 sensors, which are used to measure temperature,
pressure, and flow at various points within system. The sensors

Fig. 4. Sketch of the three-phase flow facility.

Fig. 5. Simplified schematic of nuclear power system

are configured to sample data at a frequency of 1 Hz. TFF sim-
ulates three datasets under conditions of normal and six faults
that may potentially arise during the real-world deployment. It
should be pointed out that the 24th variable is used solely for
fault case 6. The dataset is available at TFF DATA. To evaluate
the impact of faults on health indicators, we introduce faults
into the simulation following a period of standard operation.
When a system fault escalates to a predefined threshold, the
fault condition is automatically resolved, and TFF system
returns to normal.

2) Nuclear power system (NPS): NPS [10] is the nuclear
power system data collected by a large number of sensors. It
constitutes power plant generation modules, including pumps,
steam generators, turbines and other related components, refer
to Fig. 5. This system has 121 sensors to monitor and record
component pressures, temperatures, and valve operations etc.
The sampling frequency is 4 Hz. Each simulation of the NPS
starts from a standard operating state and then simulates a
fault during operation, thus creating a dataset with alternating
normal and fault states. Consistent with real practice moni-
toring, where numerous sensors are often positioned in same
place, leading to the overlap of data, we strategically select
64 monitored variables to eliminate redundancy.

To extract fault data more efficiently, we slice the sensor
signals based on sampling frequency and data complexity.
Specifically, the TFF and NPS dataset are sliced into segments
of 50 and 80 data points, respectively. We preprocess two
datasets with max-min normalization and data split is detailed
in Table I.

https://www.mathworks.com/matlabcentral/fileexchange/50938-a-benchmark-case-for-statistical-process-monitoring-cranfield-multiphase-flow-facility
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TABLE I
SAMPLES OF THE DATASETS

Dataset Fault types Training set Testing set

TFF Fault type(1-6) 874 379
Normal 478 190

NPS Fault type(1-53) 8084 3751
Normal 2698 1175

TABLE II
ACCURACY AND F1-SCORE (%) COMPARISON BETWEEN

DIFFERENT FAULT DIAGNOSIS METHODS

Method
Dataset TFF NPS

Accuracy F1-score Accuracy F1-score

PCA+LDA 73.73 72.11 72.78 73.04
WPD-MSCNN 76.70 75.89 75.53 76.42
GCN 83.68 81.35 71.39 74.31
IAGNN 92.29 91.67 87.34 87.67
CCN 91.47 91.11 85.13 85.81
CAL 93.35 93.04 86.88 87.03

CDGNN 95.23 94.92 89.48 89.91

B. Experimental Setup

1) Baseline methods: Comparison methods include tra-
ditional methods, deep learning-based methods, GNN-based
methods and causal learning methods for evaluating the supe-
riority and effectiveness of CDGNN.

1) PCA+LDA [25]: A common fault diagnosis method based
on data dimension reduction.

2) WPD-MSCNN [26]: A multi-feature scale CNN based
on wavelet packet decomposition to adaptively acquire
components at multiple feature scales, which is robust in
dealing with the scale uncertainty of vibration signals.

3) GCN [27]: A method for extracting features from graph
data for processing data from non-Euclidean space.

4) IAGNN [6]: It designs an interaction-aware module for
extracting sensor interaction relationships and creating
feature subgraphs. Connect features of multiple subgraphs
by employing a weighted sum function.

5) CCN [15]: It designs a causal consistency loss that
describes the causal consistency of fault signals, mining
invariant causal information in in sensor signals.

6) CAL [14]: It designs an attention module to distinguish
between causal and shortcut features of the input graphs,
and employs backdoor adjustment to reduce confounding
effects caused by shortcut features.

2) Implementation details and evaluation metrics: To iden-
tify the optimal hyperparameters for achieving the best results,
we conduct extensive experiments on CDGNN and baseline
methods. Learning rate of CDGNN is chosen in {0.0005,
0.001, 0.005}. When applied to TFF, the input graph consists
of 24 nodes, corresponding to 24 sensors and the initial feature
size of the nodes is 50. As for NPS, there are 64 nodes
with the initial features size of 80. These experiments are
carried out on a machine with the Windows 11 OS, with 16G
RAM, an Intel(R) Xeon(R) E-2224 CPU and a NVIDIA RTX

(a) (b)
Fig. 6. Convergence of CDGNN on (a) TFF dataset. (b) NPS dataset.

Fig. 7. Box plots for different methods on TFF and NPS.

3090 GPU. We analyze the performance of CDGNN in fault
diagnosis task using metrics such as accuracy, F1-score, and
confusion matrix and compared it with baseline methods.

C. Fault Classification Performance

In practice, mechanical equipment often ceases to function
before a fault can be identified, resulting in a paucity of fault
data. According to this principle, extensive experiments have
been conducted, and results are presented in Table II. Fig. 6
illustrates the accuracy trajectory of CDGNN over the first 200
rounds of training and testing process. Despite fluctuations in
training and testing curves due to imbalanced sampling, they
eventually converge on stable values, indicating that CDGNN
is less susceptible to overfitting.

1) TFF Experiment Results Analysis: Obviously, CDGNN
achieves optimal results on TFF compared with baseline
methods. This indicates that the fault features of sensor
signals learned by CDGNN are effective in revealing the
nature of faults in complex industrial process, which can
be attributed to three reasons: 1) CDGNN constructs graphs
using attention mechanism, which is able to reasonably rep-
resent the interactions of the multiple sensor measurements.
2) CDGNN causally disentangle input graphs, which weakens
the confounding effects of noise and irrelevant sensor signals.
The prediction based on causal subgraphs significantly im-
prove the accuracy of fault diagnosis. 3) CDGNN aggregates
causal subgraphs from various working conditions to obtain
the final complete graph representation, eliminating the data
bias caused by individualized machines and improving its
generalization ability.

It can be observed that GCN outperforms PCA+LDA and
WPD-MSCNN, indicating that it is essential to take into ac-
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count the interactions between multiple sensors and correlation
between fault features. IAGNN designs an interaction-aware
module that learns the complex interactions between different
components and is able to fuse information from multiple
sensor signals more efficiently. However, IAGNN is unable
to eliminate interference caused by irrelevant sensor signals
and noise data, and therefore cannot accurately extract fault
features, which are critical for fault diagnosis.

CCN reduces the data bias generated by changes in oper-
ating conditions by mining the invariant causal information
in fault data. However, CCN does not take into account the
interactions between multiple sensors, rendering it incapable
of identifying the propagation of fault signals. Therefore,
CCN has limited effectiveness in fault diagnosis on complex
industrial datasets. CAL analyzes the causal effects in graph
classification tasks, which utilizes a backdoor adjustment
method to assist model in eliminating spurious correlations.
Notice that CAL is built on image recognition task, where
causal information in images is transparent, consistent and
easy to extract. However, in fault diagnosis, fault signals,
irrelevant sensor signals, and noise data are highly coupled.
CAL does not take into account checking the correctness of
causal disentanglement and the interference of noise data.

2) NPS Experiment Results Analysis: To verify the effec-
tiveness of CDGNN on large-scale imbalance data, we applied
it to the NPS data, which contains 53 fault categories with
large sample differences between different fault categories.
According to the results in Table II, CDGNN again achieves
superior performance on NPS. We further compare the fault
diagnosis results of CDGNN with baseline methods using
confusion matrices as shown in Fig. 8, where darker colors
indicate more accurate fault diagnosis. It can be observed
that CDGNN demonstrates commendable performance across
various faults. The competitive results on a large-scale im-
balance dataset further validate the effectiveness of CDGNN.
Additionally, PCA+LDA and WPD-MSCNN perform better
than GCN when applied to NPS because NPS has much more
sensor signal sequences than TFF. Therefore, the complexity
of the structure is high when constructing them to graphs,
which prevents GCN from effectively learning information
about neighbouring nodes.

CCN can only mine fault information in each sensor signal
sequence, when a fault causes multiple sensor signal readings
to be abnormal, CCN is unable to identify the correlation
relationships between them. IAGNN, CAL, and CDGNN are
all GNN-based methods, where fault information and cor-
relation relationships are represented by node features and
edge attributes, respectively, and the effective information
is learnt in message passing. It is worth to note that CAL
performed worse than IAGNN on NPS data, in contrast to their
performance on TFF data. The more complex an industrial
system is, the more important it is for fault diagnosis to take
into account the topology and interactions between equipment.
NPS contains 64 sensors, so constructing a reasonable graph
structure is crucial for distinguishing faults. Obviously, the
graph structure of NPS data is much more complex than
that of TFF data. CAL can only disentangle obvious causal
information in images, but it cannot ensure correct causal

disentanglement when dealing with complex sensor signals.
CDGNN employs a causal disentanglement learning module

to extract key substructures in large scale graphs and thus
learn effective information for fault prediction. This suggests
that CDGNN with causal learning capability can handle un-
balanced data more effectively. Combined with the box plots
in Fig. 7, it is easy to find that CDGNN is more effective and
stable in fault diagnosis of complex industrial process.

D. Analysis on Causal Disentanglement Learning

CCN, CAL and CDGNN are all classification models based
on causal learning. To visually analyse the causal disentangle-
ment capability of CDGNN, the features of TFF data are visu-
alized using t-distributed stochastic neighbourhood embedding
(t-SNE) [28], including raw features, features from the last
layer of CCN and CAL, and features of causal subgraphs
extracted by CDGNN. As shown in Fig. 9(a), the features
of TFF fault samples are distributed depending on the distinct
machine statuses and working conditions because the sample
features contain noise and data biases. As a result, even for
the same fault, the feature distribution has a large deviation. It
can be seen that the feature space distributions of the raw data
of the faults are very close to each other except for Fault 1.
Because each fault causes only a few sensor readings to deviate
from normal, a large number of irrelevant sensor signals with
time-series features dominate the feature distribution, making
different faults highly similar in the feature space.

According to existing studies [6] and experimental analysis
in Section IV-C, mining interrelationships among multiple
sensor measurements and fusing the information is crucial
for fault diagnosis of complex industrial process. CCN aims
to mine the invariant causal information in machines and
resolve the data bias caused by different machines. However,
CCN can only process each sensor signal individually, and
cannot guarantee the reliability of the extracted signals without
considering the influence of other sensors. According to the
visualisation results in Fig. 9(b) and Fig. 9(c), the feature
clustering performance extracted by CCN is mediocre and
CAL is better than CCN. The clustering performance of the
causal subgraph features extracted by CDGNN is excellent,
as shown in Fig. 9(d). There are three reasons: 1) CDGNN
uses the attention mechanism to construct the graph, which
takes into account the interactions between multi-sensor mea-
surements. 2) CAL cannot ensure the credibility of the causal
features extracted from sensor signals, whereas CDGNN trains
two independent GNN modules using a causal/bias-aware loss
function to ensure the correctness of causal disentanglement.
3) CDGNN aggregates causal subgraphs from different ma-
chines to obtain a complete graph representation to learn the
bias information caused by noise and working conditions.

E. Ablation Study

To assess the efficacy and contribution of individual mod-
ules within CDGNN, ablation studies were conducted. It is
clear that each module plays an important part in the overall
performance of CDGNN, as shown in Table III. The employ-
ment of an attention mechanism for the construction of graphs
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(a) (b) (c) (d)

(e) (f) (g)
Fig. 8. Confusion matrices of the NPS. (a) PCA+LDA, (b)WPD-MSCNN, (c)GCN, (d)IAGNN, (e)CCN, (f)CAL, and (g)CDGNN

(a) (b)

(c) (d)
Fig. 9. Feature visualization via t-SNE of TFF. (a) Raw data space, (b)
CCN learning space, (c) CAL learning space, (d) Causal subgraph features
of CDGNN learning space.

proves to be beneficial for the GNN to learn the topology in
complex industrial systems. By aggregating causal subgraphs
from multiple sources, CDGNN effectively eliminates data
bias generated by machines in different working conditions,
thus improving its generalization. Obviously, the causal dis-
entanglement learning module exerts the most significant influ-
ence on fault diagnosis performance, underscoring its pivotal

TABLE III
ABLATION STUDY RESULTS

Attention Disentanglement Aggregation TFF NPS

— — — 85.72 72.37

✓ — — 87.33 75.28

— ✓ ✓ 92.37 85.11

✓ ✓ — 93.25 85.68

✓ — ✓ 89.26 79.97

✓ ✓ ✓ 95.23 89.48

1) Attention: attention mechanism for graph construction, 2) Dis-
entanglement: causal disentanglement learning, 3) Aggregation:
subgraph features aggregation.

role. It disentangles the input graph from the perspective of
causality to extract causal subgraphs. The prediction based on
causal subgraphs indeed mitigates the confounding effect of
irrelevant sensor signals and noise. After removing these three
modules, CDGNN reverts to a classic GNN model, exhibiting
a classification performance analogous to that of GCN. The
above analysis proves the rationality and necessity of CDGNN.

F. Hyper-parameter and Computational Cost

The sensitivity of λ is illustrated as shown in Fig. 10. For λ,
a specific range is identified that optimizes model performance
over two datasets, and CDGNN achieves the best accuracy
when λ is 0.5. It is notable that NPS data exhibits greater
sensitivity to variations of λ may due to the NPS dataset is
more unbalanced and complex.
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Fig. 10. Accuracy comparison under different λ.

TABLE IV
COMPUTATIONAL TIME COMPARISON (EPOCH/SECONDS)

Method
Dataset TFF NPS

Training Testing Training Testing

PCA+LDA 19.03 5.76 322.34 76.45
WPD-MSCNN 14.78 3.65 170.14 57.33
GCN 1.76 0.33 17.04 4.56
IAGNN 5.87 1.25 63.85 18.77
CCN 10.43 2.89 152.87 39.11
CAL 3.63 0.65 43.76 8.92
CDGNN 4.71 0.97 51.76 14.33

Computational time is an important metric to evaluate the
efficiency of models. To this end, we measured the compu-
tational costs of CDGNN and baseline methods, as shown in
Table IV. GCN has a simple structure and naturally requires
the least computation time, but it offers poor fault diagnosis
capabilities. Although CAL requires less computation time
than CDGNN, it performs mediocrely on NPS with higher
complexity. In contrast, CDGNN achieves excellent fault di-
agnosis results with only a minor increase in computational
load. CDGNN has the lowest computation time compared to
the other baseline methods, which proves that it can provide
fault diagnosis results faster.

V. CONCLUSION
In this study, we excavate the causal relationships inherent

to GNN-based fault diagnosis according to the causal theory
and introduce the novel causal disentangled graph neural net-
work (CDGNN). According to causal theory, irrelevant sensor
signals and noise data are regarded as bias variables, which
exert confounding effect in fault diagnosis and mislead GNN
to learn spurious correlations. CDGNN solves the problem by
causally disentangling input graph into causal/bias subgraphs
and aggregating causal subgraphs. Experimental results on
the TFF and NPS datasets indicate that predictions obtained
from causal subgraphs are closer to real results. CDGNN
has better stability and generalization ability by disentangling
causal and bias features, and can be more effectively applied
to complex industrial process. This study is conducted in the
closed-world assumption that all faults in testing data have
already appeared in training data. Further research will focus
on applying CDGNN to open-set recognition, distinguishing
and identifying unknown faults based on causal features, and
detecting hidden unknown faults in time.
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