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Abstract— Vision-and-language Navigation (VLN) is a chal-
lenging problem that requires agents to follow natural language
instructions in a photo-realistic environment. The alignment
between visual object information and instruction object infor-
mation is critical for the navigational capabilities of intelligent
agents. However, most reinforcement learning policies primarily
focus on the agent’s distance change to the target viewpoint as
the direct reward after taking an action, with object information
playing a minor role in classical reinforcement learning for
VLN. To address this limitation, we construct a new reward
shaping that incorporates both the changes in the agent’s
distance to the target and the progress made in navigating
according to the given instruction. To capture the navigation
progress, we propose an object alignment method that aligns the
visual object information observed by the agent with the object
information specified in the instructions. By leveraging the
object’s position within the navigation instruction, we estimate
the agent’s approximate progress during navigation. Experi-
mental results demonstrate the effectiveness of our approach
in reducing the navigation error (NE) and achieving high
performance in terms of the success rate weighted by path
length (SPL). Our method significantly enhances the agent’s
ability to accurately follow natural language instructions to
reach the intended destination, while also exhibiting improved
generalization in unseen environments.

I. INTRODUCTION

Training an intelligent robot agent to follow human natural
language instructions constitutes a long-term and complex
task. A great variety of vision-and-language navigation
(VLN) studies [1]–[4] have been introduced to explore this
area. These research efforts have significantly contributed
to the ultimate goal of enabling robots to understand and
comply with human language instructions. Unlike static
visual language tasks such as visual question answering [5],
the VLN task entails dynamic challenges in recognizing and
interacting with a changing environment during navigation.
VLN integrates various sub-tasks, including understanding
natural language instructions, perceiving the visual world,
implementing navigational behaviors to reach the target
location, and so on. Several datasets have been proposed to
investigate this task, the most diverse and widely used is the
R2R dataset [6] based on the Matterport3D simulator [7].
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TABLE I
ACRONYMS AND THEIR DEFINITIONS

Abbreviations Corresponding meanings

TL The trajectory length (in meters) of the agent navigation
path

NE The average distance (in meters) between the agent’s
final location and the target

SR The rate at which the agent stops 3 meters within the
target range

SPL The success rate weighted by the normalized inverse of
the trajectory length

This dataset comprises 10,800 panoramas from 90 building-
scale scenes. R2R has become a significant benchmark, and
subsequent datasets have been further extended based on it,
such as the Room-for-Room dataset for long trajectories [8]
and the RxR dataset containing multilingual instructions [9].
Additionally, more complex outdoor environment datasets,
such as the street view dataset Touchdown [10], have also
been developed.

Numerous models have been proposed for the R2R nav-
igation task [6]. Given natural language instructions, the
agent travel through different rooms or floors, explores a
photo-realistic 3D environment, and eventually stops at the
destination. The research conducted in the Matterport3D
simulator [7] serve as a bridge for realizing the sim-to-real
transfer to robot natural language navigation [11].

The evaluation of VLN is very straightforward. The exe-
cution route by the agent is considered as a success when the
agent’s final position is less than a certain distance from the
target position (here, we set it to 3m). Generally speaking,
we only need the following evaluation metrics: Success Rate
(SR), Trajectory Length (TL), Success weighted by Path
Length (SPL), and Navigation Error (NE). See Table I for
details.

For VLN tasks, the majority of existing approaches em-
ploy a combination of imitation learning (IL) and reinforce-
ment learning (RL) to train the agent [2], [12]–[15]. All
these studies contribute to improved agent performance in
navigation tasks. However, the above models that mix IL
and RL do not incorporate crucial object information into
the reward. In reinforcement learning, the direct reward
primarily relies on the distance change between the agent
and the destination, while the object information plays a
limited role. We propose incorporating object information
into reward shaping, hoping that object information, such



as iconic landmarks, can be leveraged during the stage of
reinforcement learning to assist the agent in finding the
optimal path.

In the ablation studies, we compared the model perfor-
mance across three variants: using new reward shaping in
all training stages, applying new reward shaping in partial
stages, and not employing new reward shaping in any stages.
The results of the ablation experiment demonstrate that the
method we propose achieves the best performance in terms
of SR, SPL, and NE in the unseen environment. When the
new reward shaping is not used in the second training stage,
the SPL in the validation unseen split is only 0.513, while
the NE reaches 4.636. If no new reward shaping is used
in both training stages, SPL and NE are 0.519 and 4.701,
respectively. These two models perform inferior to the full
model. Overall, the new reward shaping approach enhances
the agent’s performance to a certain extent and improves its
ability to accurately follow natural language instructions to
reach the correct destination.

In summary, the contributions of our work are as follows:
• A simple method is proposed to align the visually

observed objects with corresponding objects in the
instruction. At the time of acquiring observation in
each step t, the rough progress value is obtained at
the same time based on the object’s position in the
instruction, thereby assisting the agent in following the
path specified by natural language instruction during
navigation.

• The corresponding relationship between visual object
information and instruction object information is in-
corporated into reward shaping, allowing symbolic
landmark information to play a role in reinforcement
learning. Compared to reward shaping without object
information, our proposed method reduces NE by ap-
proximately 3% while maintaining similar SPL. This
indicates that our proposed method enhances the accu-
racy of the agent navigation path and its ability to reach
the target viewpoint.

The rest of the article is organized as follows. Section
II details the related work. Problem formulation and the
proposed RewardVLN are discussed in Section III. In Section
IV, the effectiveness of the proposed method is validated on
the VLN dataset. Finally, Section V concludes our work and
discusses potential avenues for future research.

II. RELATED WORK

The research field of visual language navigation is cur-
rently in a booming stage, and because of its wide application
and great practical value, it has triggered the continuous
innovation and research of many experts and scholars in the
field. In order to make the model more generalized when
applied to the actual situation and improve the performance
of the model, a hybrid reinforcement learning method based
on Model-free and Model-based [12] has been proposed,
and the results prove that the model obtained by using this
method also has a good transfer ability for the unseen envi-
ronment. Speaker-Follower Models [1] can greatly improve

the performance of their models through data augmentation
and semantic reasoning in the panoramic action space.

Although the BERT model has made some achievements
in the VLN field, it is precisely because the original BERT
architecture cannot adapt well to the needs of the VLN field,
so a recurrent BERT model for VLN is proposed [2]. In
this paper [16], BnB, a large-scale intra-domain pretraining
dataset, is introduced for AirBert pretraining. At the same
time, the introduction and application of shuffling loss also
lead to higher generalization performance of the whole
model. In the course of agent navigation, previously visited
locations and actions taken affect subsequent states. To make
better use of this information, it makes sense to introduce
a History Aware Multimodal Transformer (HAMT) [17],
which enables the historical information to participate in
multimodal decisions and then fine-tune navigation strategies
with reinforcement learning. Episodic Transformer (E.T.)
[18], a new visual-language navigation architecture, uses
a multimodal transformer to encode for better navigation
performance in the environment; For the input images of the
agent, most processing is to pre-train the image encoder on
the ImageNet [19] and then encode the image information.

However, for the structural information in the scene, even
though it is crucial to the target navigation task, pretraining
on the ImageNet cannot properly encode. So, Structure-
Encoding Auxiliary Tasks (SEA) [4] came into being, which
uses the dynamic data in the navigation process environment
for pre-training and improving the image encoder; Jialu
Li et al. proposed the ENVEDIT method [3], which is
different from previous studies. This method focuses on
the environment and creates a new environment suitable for
agents by changing the existing environment that agents are
already familiar with to train more general agents. Dual-
Scale Graph Transformer (DUET) [20] can be used to con-
struct a topological map, which uses graph transformers and
combines fine-scale and coarse-scale encodings for dynamic
navigation planning.

For the problem that agents sometimes get stuck in long
instructions or ignore short instructions, a model-agnostic
milestone-based task tracker (M-TRACK) [21] is used to
guide agents and monitor their progress. Then the agent will
execute the marking instruction according to the progress
of the current milestone, thus solving the problem to some
extent. In the paper [13], the author migrated Graph neural
network to the VLN field and proposed the Entity Relation-
ship Graph method, thus improving the performance of the
agent in the unseen environment. Different from previous
work, we focus on the changes in the agent’s reinforcement
learning in the navigation environment when we implement
the Graph method, hoping to make the agent’s reinforcement
learning more instructive through Reward Shaping.

III. PROBLEM OVERVIEW AND MODELLING

A. Problem Overview

For the Room-to-Room dataset, the VLN problem can be
described as follows:
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Fig. 1. Model overview: RewardVLN is based on graph neural networks, where nodes within the graph are categorized into three distinct types: scene-
related, object-related, and direction-related. The edges connecting these nodes serve as conduits for information exchange and message propagation.

First of all, the agent is given an instruction. The attributes
among the words may be different, for example, some are
about instruction action and some are about object observa-
tion, but in a word, these words and the relationships among
the words can give the agent some direction. At each time
step t, the agent receives a panoramic view input about its
surroundings. It is worth noting that each panoramic view
contains 36 single-view images, and within each single-view
image, the agent has n candidate navigation directions (n
depends on the location of the agent). Each selection of the
next navigation viewpoint will have an impact on the future
actions and the observed visual images, so the agent needs
to have a certain global awareness when choosing each step
to better complete the task.

In order to facilitate simulation and calculation, we can
abstract the navigation map as the “graph structure” in the
data structure, and the navigation point of the agent can
correspond to the vertex in the connected graph. The task of
the agent is to move from the source point to the target point
on a connected graph according to the received instructions
and the observed view. How to effectively guide the agent
and obtain better evaluation index values (such as higher
success rate, lower navigation error, etc., these indicators
will be discussed in detail in the following part) is the
main problem to solve. For such a task, it seems relatively
simple, but we notice that in the current VLN leaderboard,
due to the complexity and change of the actual situation,
the SPL of humans to complete such a task is only 0.76,
while for machine agents, it is still difficult to complete
such a task under today’s technological development because
it doesn’t have rich prior knowledge, good perception and
inference ability, high strength computing ability and other
comprehensive qualities like human beings.

B. Models on Graph Neural Networks

In this experiment, we mainly use the model based on
a graph neural network. In this model, we give different
meanings to the nodes and edges in the graph, which plays an
important role in the actual navigation process. For a given

instruction, first of all, we can divide nodes in the graph
into three categories, the first category is scene related, the
second type is object related, and the third type is related to
the direction. Secondly, in order to show the relationship
between nodes of different types and those of the same
type and to fully express the complete semantics of the
instruction, we will carry out a special meaning analysis
of edges in the graph. For the nodes related to the scene
and object mentioned above, the edge between them can
be expressed as Edgeso, which clearly corresponds to the
meaning of the short instruction containing these two types
of nodes in the instruction. Since the graph contains a lot
of nodes and edges, its connection structure can express
the meaning of various instructions without ambiguity, thus
enabling the agent to have a higher accuracy.

The above is just the static structure transformation from
the natural language instruction to the instruction that the
agent can understand. In the process of agent navigation, the
agent continuously obtains information from the instruction
and is guided to perform the next action to reach the next
state. Therefore, the graph transformation is a very key link
in the whole dynamic change. The dynamic process of the
graph can be roughly divided into four steps, namely node
initialization, information passing, node update, and action
prediction. Among them, the function of node initialization is
to establish the first-level text-visual connection and prepare
for the subsequent information passing. In the process of
information passing, each node can not only receive infor-
mation from other nodes but also send information to other
nodes. Since edges in the graph are relational, they are passed
through edges in the graph, which is also the process of
establishing the second level of text-visual connection. After
the information is passed, the node needs to update the data.
Simply, the received information can be added up directly
here. Finally, we need to perform a learnable mathematical
mapping and multi-class prediction of actions through the
Softmax function.

Based on the execution of the entire model, we visualize
the abstract process, as shown in Fig. 1.



(a) Panorama of viewpoint a

(b) Panorama of viewpoint b

0: “Walk into the hallway and through the entrance to the kitchen
area. Walk Passed the sink and stove area and stop between the
refrigerator and dining table.”
1: “Walk through the kitchen. Go past the sink and stove stand in
front of the dining table on the bench side.”
2: “Walk into the kitchen. Walk past the refrigerator. Stop directly
in front of the wooden table.”

Fig. 2. An example of object alignment: The images above are panoramas
from different viewpoints, while the corresponding instructions are presented
below.

C. Object Alignment

During the navigation process of the agent, according
to the natural language instruction, object information will
appear in the instruction, which is of great significance as a
landmark. The agent obtains observation at each step t, and
the visual object information obtained will be matched with
the object information in the instruction to obtain the position
of the object information in the instruction. The position will
be used to evaluate the progress of the agent to complete the
navigation, as shown in Fig. 2, these three instructions are
different expressions of the same path. In 2a panorama view,
the agent will recognize the refrigerator landmark. In 2b
panorama view, the agent will recognize the table landmark,
and in the instruction, the position of the table object in the
instruction is behind the position of the refrigerator in the
instruction. Then, during the agent navigation process that
implements this instruction, the observation progress in 2a
panorama view will be less than the observation progress in
2b panorama view. Each time the agent makes an action, the
progress difference of the observation before and after the
action will participate in the training of the agent as part of
reward shaping.

The agent first obtains all the object embeddings
O1, O2, ..., On in the observation from the obtained obser-
vation vi, next, the agent decodes these object embeddings
into the corresponding object w1, w2, ..., wn, then, the agent
matches these objects in the instruction, and finally obtains
the corresponding positions of different objects in the in-
struction sentence i1, i2, ..., in, we take the maximum value
as the progress of the observation.

oj = f (vi) , j = 1, 2, . . . , n

wk = L (ok) , k = 1, 2, . . . , n

ik = gins (wk) , k = 1, 2, . . . , n

p = max (i1, i2, . . . , in)

(1)

where L indicates linear mapping, f indicates a mapping

from observation to object encoding, and gins represents
a mapping from object wk to object location ik in the
instruction.

D. Reward Shaping

Choose the right route and finally reach the right desti-
nation according to the given natural language instructions
in the unknown environment. According to human habits,
the most important thing in the navigation process is the
feedback of the surrounding environment, namely the cor-
responding recognition of iconic landmarks. We hope that
robot agents can also have this ability. That is, the agent
can align the landmarks in the instruction with the objects
it is observing at a certain point of view and use these
landmarks to help the agent find the correct route. At each
step t, the agent obtains the observation of the current
viewpoint, obtains the candidate set of the next step and
the list of objects currently recognized, and compares the
recognized objects with the objects in the instruction, which
reflects the completion progress of the agent’s navigation
according to this instruction to a certain extent. Therefore,
we propose a simple method of alignment object, which
extracts the object in the instruction and aligns it with the
object observed visually, obtains the rough progress value of
this observation, and then we apply it to reward shaping for
reinforcement learning in the training process. We redesigned
the direct reward after each action made by the agent and
combined the change of distance from the target point with
the change of progress in the navigation process of executing
the instruction, hoping to ensure the accuracy of the route
while reaching the final goal.

At every time step t, a direct reward will be generated
after the agent makes an action. In our design, this reward
includes two parts: the change of the distance (dt−1 − dt).
And the change of the progress (pt − pt−1). In order to
express brevity, we did not add the subscript representing
time step t:

∆d = dt−1 − dt

∆p = pt − pt−1

γ1 = Rd2r(∆d)

γ2 = Rp2r(∆p)

γ = γ1 + γ2

(2)

where γ represents the direct reward for each step t, and
∆d and ∆p represent the change in distance and progress,
respectively, and the function Rd2r and the function Rp2r

respectively represent the reward generated by the distance
change and the reward generated by the progress change. It is
worth noting that in the process of reinforcement learning,
the agent may continuously perform an action to obtain a
reward, thus resulting in the so-called “reward cycle” [22].
Therefore, when designing rewards, no matter for rewards
defined by distance, or for rewards defined by progress, when
positive rewards are given to the agent under certain circum-
stances, some negative rewards will be correspondingly given
in other circumstances so as to avoid the situation that the



Fig. 3. New reward shaping: The estimation of progress is achieved by aligning the visual object information observed by the agent with the object
information provided in the instructions. The new proposed reward shaping incorporates both the changes in the agent’s distance to the target and the
progress made in navigation based on the given instruction.

Fig. 4. Overall architecture: Firstly, new environments and new instructions are generated to augment data. Subsequently, the entire dataset is employed
in a training process that combines reinforcement learning and imitation learning.

agent keeps repeating an action in order to obtain rewards.
The flow of the RL phase is shown in Fig. 3.

Through such a design, we hope to make the agent get
closer to the target at every step while ensuring the accuracy
of the route as far as possible. The experimental results
show that, compared with the performance of [13] in the test
split, SR and NE both perform better when SPL is basically
unchanged. This shows that our method has been improved
in the accuracy of reaching the correct destination.

E. Reinforcement Learning and Imitation Learning

The training process of the experiment is mainly made of
Reinforcement Learning (RL) and Imitation Learning (IL)
for mixed training. To make the learning methods of the
two more effective in guiding the agents to the next action.
Therefore, imitation learning is coordinated to a certain
extent. In form, here is:

Ltotal = µLIL + LRL (3)

where µ is the loss coefficient of imitation learning.

The overall architecture is shown in Fig. 4. First, the
EnvDrop method [14] is used to generate a new environ-
ment from the existing environment, then the speaker model
generates new instructions from the new environment. All
environments and instructions are used in the training process
of the agent. For each instruction, the agent is trained by
combining RL and IL. In the RL phase, the agent receives a
direct reward at each step, consisting of the distance reward
and the process reward, which is used in the subsequent A2C.
In the IL phase, the agent receives a teacher action at each
step. A mixture of IL and RL training is used to combine
the advantages of both to achieve better performance.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

The computer configuration parameters of this experiment
are: GPU: RTX2080TI, a total of 11.7GB of video memory;
CPU: 6-core E5-2680v4; Memory: 30.1GB; Hard drive:
451.0GB. Meanwhile, the whole experiment is carried out in



the Matterport3D Simulator, which requires the correspond-
ing simulator environment to be configured on the server.

The dataset of the experiment is mainly Room-to-Room
(R2R). The dataset contains 21,567 words of navigation
instructions with an average sentence length of 29 words.
Meanwhile, we divided the dataset into four parts: train,
validation seen, validation unseen, and test unseen sets. In
order to reflect the generalization of the model, we test the
trained agent with new instructions in a new environment
and check how well it performs.

Among them, SPL is the relatively important indicator in
the R2R dataset because it can measure the accuracy and
efficiency of navigation at the same time. Therefore, in this
experiment, we need to pay attention to changes in this
indicator to a certain extent.

B. Training

The experiment is divided into two stages. The first stage
uses data in train split to train, and the number of iterations
is set to 90,000; The second stage uses the model with the
best performance on the validation unseen spilt in the first
stage, uses the enhanced data [14] and data in train split to
train together for fine-tuning, and the number of iterations is
set to 300,000.

C. Experimental Result

There are three experimental Settings: single run, beam
search, and pre-exploration. Single run is the most common
one, which can most intuitively show the agent’s perfor-
mance, navigation efficiency, and generalization in an un-
precedented environment. We tested the agent’s performance
on the single-run evaluation setting. Because of the difference
in data and computational power, we did not reach the
state-of-the-art. However, with the same dataset and exper-
imental setup, our proposed method showed a performance
improvement over the baseline method Lang-Vis-Entity. In
the following description, we use the model that performed
best on the validation unseen split during training compared
to the baseline model.

As shown in Table II, our model slightly outperforms the
baseline method on NE, SR, and SPL on the validation seen
split. It slightly underperforms the baseline method on both
SR and SPL on the validation unseen dataset and performs
better on NE, 3% lower than the baseline method. On the
unseen data segmentation set test unseen split, the SPL of
the two is not much different, but our model outperforms
the baseline method on both NE and SR. In conclusion, our
proposed method of applying object information to reward
shaping performs better than the baseline method Lang-Vis-
Entity. In our model, SR on the two unseen splits is basically
the same, and so is SPL, which indicates that our method
can generalize better in unseen environments. The proposed
method has made greater progress in reducing NE, which
shows that the improvement we have made in reward shaping
makes the end position of the agent closer to the target.
The possible reason is that the target point in the instruction
usually has an obvious landmark object information. In our

(a)

(b)

(c)

(d)

Fig. 5. SPL in training iterative process, (a)The first stage, val seen, (b)The
first stage, val unseen, (c)The second stage, val seen, (d)The second stage,
val unseen

method, object information is integrated into reward shaping,
so that object information in the instruction can be better
utilized, making the navigation of the agent more accurate
and its performance improved.

For the change in SPL in val seen and val unseen envi-
ronments during the two training phases, see Fig. 5.

As can be seen from Fig. 5, in the first stage, only the
training data participated in the training, and SPL gradually
increased with the increase of the number of training itera-
tions. In the second stage, with the increase of the number
of training iterations, the SPL presented a spiral change, the
oscillation was violent in the early stage of training and
tended to be stable at the end of training. We guessed that



TABLE II
COMPARISON OF SINGLE-RUN PERFORMANCE WITH THE PREVIOUS METHODS ON R2R

Model Validation Seen Validation Unseen Test Unseen
TL NE↓ SR↑ SPL↑ TL NE↓ SR↑ SPL↑ TL NE↓ SR↑ SPL↑

Random 9.58 9.45 0.16 - 9.77 9.23 0.16 - 9.89 9.79 0.13 0.12
Human - - - - - - - - 11.85 1.61 0.86 0.76

Seq-to-Seq 11.33 6.01 0.39 - 8.39 7.81 0.22 - 8.13 7.85 0.20 0.18
Speaker-Follower - 3.36 0.66 - - 6.62 0.35 - 14.82 6.62 0.35 0.28

EnvDrop 11.00 3.99 0.62 0.59 10.70 5.22 0.52 0.48 11.66 5.23 0.51 0.47
Lang-Vis-Entity 10.13 3.47 0.67 0.65 9.99 4.73 0.57 0.53 1.29 4.75 0.55 0.52

RewardVLN 10.32 3.41 0.68 0.66 11.85 4.57 0.56 0.52 12.19 4.65 0.56 0.52

TABLE III
ABLATION STUDY

Model Stage1 Stage2 Validation Unseen Test Unseen
TL NE↓ SR↑ SPL↑ TL NE↓ SR↑ SPL↑

1 10.078 3.429 0.667 0.645 10.894 4.701 0.556 0.519
2 ✓ 11.183 3.541 0.655 0.629 13.009 4.636 0.554 0.513

Full model ✓ ✓ 10.319 3.408 0.684 0.657 11.846 4.574 0.561 0.523

it’s probably because the environment in the enhanced data
has been processed by the EnvDrop method [14], and the
instructions in the enhanced data are generated by the speaker
model. The information about objects in the environment
and objects in the instructions have been weakened to some
extent, so the training has been affected to some extent.

D. Analysis

According to the above experimental process, we conduct
a series of comparative analyses on the experimental results
(including ablation experiments, etc.) In Table III, ticked
off indicated that the new reward shaping was used. The
table shows the contribution of the new reward shaping
to navigation results as well as the model performance at
different stages in the training process. Stage 1 represents
the first stage, training only with training data, and stage 2
represents the second stage, training combined with training
data and augmented data. The best results are in bold font.

Model 1 does not use the new reward shaping in the
first stage and the second stage. The performance of NE,
SR, and SPL in validation seen and validation unseen data
sets is slightly weaker than that of the full model. In
the seen environment, the overall performance of the full
model is better, but the difference is not big. In the unseen
environment, the performance of the full model is more
prominent on NE, which is reduced by about 3% compared
with Model 1, indicating that using the new reward shaping
can effectively help the agent to stop in the correct position.
In the unseen environment, this advantage is more obvious.

Model 2 uses the new reward shaping for training in the
first stage but does not use it in the second stage. The
experimental results show that Model 2 performs the worst
among the three models, and almost all indicators in the
seen and unseen environments are weaker than the other
two models. It shows that only when new reward shaping
is used completely in the two stages can the performance of
the agent be improved. If new reward shaping is used only in
a certain stage, the performance of the agent will be reduced.

However, in the unseen environment, the performance of
Model 2 on NE is better than that of Model 1, which indicates
that our proposed new reward shaping is helpful in navigating
to the correct target point in the unseen environment. In
conclusion, the proposed method plays a significant role in
reducing NE.

In addition, during the training of the three models, it is
found that the training process in the stage in which the new
reward shaping is adopted is quite oscillatory, especially in
the early stage of training. Model 1 does not use the new
reward shaping in the two stages, so the training is relatively
stable. In the second training stage, Model 2 does not use
new reward shaping and has a large change range in the
process of fine-tuning. The performance of Model 2 on the
validation set is poor in the early training stage. However,
with the increase in the number of training iterations, the
performance of Model 2 will also rise. In the middle stage
of training, the performance does not increase much. When
the number of training iterations approaches 300,000, the
performance will reach its peak. The same is true for the Full
model, but its upper-performance limit is higher than that
of Model 1 and Model 2. When the performance becomes
stable, its performance is better than that of Model 1 and
Model 2.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusion

In this paper, we introduce a novel reward shaping ap-
proach for mixed training of imitation learning and reinforce-
ment learning in VLN tasks. The proposed reward shaping
method incorporates two key factors: the change in distance
between the agent and the target, and the progress made
in navigation while following instructions. This approach
considers both the accuracy of the route and the correctness
of reaching the navigation target. Additionally, to enhance the
utilization of object information, an object alignment method
is proposed. At each step, the visual object information is
aligned with the corresponding object information in the



navigation instruction. This alignment allows the agent to
obtain a rough estimation of navigation progress based on
the object’s position in the instruction, thus assisting the
agent in following the natural language instruction for nav-
igation. Compared with the baseline method, our proposed
approach effectively reduces navigation errors, improves the
correctness of the agent’s navigation route and the accuracy
of reaching the target location, and enhances overall agent
performance.

B. Future Work

Due to the lack of training data and the limited diversity in
the training environments, we used the EnvDrop method [14]
in this work to generate a new environment by processing the
existing environment and the speaker model [1] to generate
new instructions, but these newly generated instructions are
not of high quality, generally short in length, and contain
less information about objects. As a result, the instructions
are not clear, which also causes confusion to the agent and
makes the navigation task more difficult. However, the object
alignment method proposed by us exactly needs detailed
object information. The richer the object information is, the
more space our method can play. Therefore, richer and more
accurate command generation will undoubtedly improve the
performance of our method. Recently, a new high-quality
instruction generator named Marky was proposed [23], and
we look forward to using the new tool to obtain higher-
quality enhanced data.

The correspondence between visual object information and
instruction object information is an important factor affecting
navigation results. The accuracy of this object information
correspondence is also important for our new reward shap-
ing. The higher the matching degree between vision and
instruction, the greater the role our proposed method plays.
Therefore, we hope that a more efficient and general semantic
coding method can be developed to encode objects with
semantic information. In this way, when matching visual
object information and instruction object information, the
visual information can correctly match the encoding of
objects with similar semantics, and the disturbance to the
model will be reduced.
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