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Abstract— Vision-and-Language Navigation (VLN) in contin-
uous environments aims to navigate robot agents in unseen
environments following natural language instructions. The ma-
jority of existing approaches rely on constructing semantic maps
or topological maps to record information. However, semantic
maps overlook the detailed information of objects and the
correspondence among views during navigation, while topolog-
ical maps lack the spatial representation between entities. To
address these limitations, we propose a novel visual feature rep-
resentation method for continuous VLN, called Multiple Visual
Features in Topological Map (MV-Topo). MV-Topo utilizes three
distinct visual encoders to extract visual features, which are
integrated in the dynamically generated topological map. These
fused features actively participate in the subsequent cross-
modal planning to derive a long-term path towards a subgoal,
effectively guiding the agent to reach the final location. We
experimentally demonstrate the effectiveness of our approach
and achieve competitive results on the full VLN-CE test splits.
Notably, our method outperforms the state-of-the-art by 3.5%
in terms of the Navigation Error (NE) metric, indicating that
the utilization of multiple visual features significantly enhances
the agent’s perception of semantic targets.

I. INTRODUCTION

The desire for an interactive assistant robot capable of
following human instructions has been a longstanding pur-
suit. To explore this area, Vision-and-Language Navigation
(VLN) [1] has been introduced. This task requires a robot
agent to reach the target location based on a natural language
instruction and the surrounding environment. Initial efforts
focused on the discrete VLN setup [2], [3], [4], [5], a sim-
plified version where agents only need to select predefined
waypoints in an environment with a navigation graph.

However, discrete VLN task relies on many unrealistic
assumptions, so Vison-and-Language Navigation in Contin-
uous Environments (VLN-CE) [6] has been proposed. VLN-
CE provides a more challenging and realistic setting by
removing the navigation graph and requiring the agent to
navigate freely in the environment using low-level actions.
Due to the large domain gap between the two tasks, the
performance of an agent that excel in discrete VLN will
be drastically degraded in continuous VLN, thus numerous
methods are dedicated to narrowing the gap [7], [8], [9],
[10]. Most current approaches utilize the waypoint predictor
[10], decomposing the task into waypoint generation, cross-
modal planning, and navigation control. This method is much
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Fig. 1. VLN-CE requires an agent to navigate through a continuous
environment following a given natural language instruction. At each step,
our proposed model incorporates three distinct visual features into the
topological map to facilitate the alignment between the instruction and the
environment. Subsequently, the agent executes low-level actions to move
towards a new location, where it can gather new observations.

clearer and more straightforward compared to an end-to-end
action prediction directly from instructions and environment.

Existing approaches to VLN-CE often rely on constructing
maps to record information. [11], [12], [13] construct self-
centered semantic maps during navigation and perform cross-
modal alignment to align semantic maps and instructions.
Although these approaches strengthen the agent’s semantic
perception and spatial reasoning, they are prone to confusion
when multiple objects of the same kind are present. Addi-
tionally, they are limited in correspondence among views
in continuous environments, which makes it easy to forget
previously visited locations and actions during long-horizon
navigation. To address the problem of historical memory and
information storage for long-horizon navigation, topological
maps have been employed [14], [15]. Topological maps
facilitate structured memory and path recording over long
distances. However, they lack spatial representation between
objects, and the visual features used in these approaches
generally contain only implicit semantic information, failing
to represent object attributes such as texture or shape.

In this paper, a novel visual representation for VLN-CE is
proposed to solve the above two problems, namely Multiple
Visual Features in Topological Map (MV-Topo), as shown
in Fig. 1. The proposed method unites the advantages of
semantic maps and topological maps. We leverage a pre-
trained semantic segmentation model to encode RGB images,
receiving features that encompass both fine-grained (e.g., tex-
ture, color) low-level features and coarse-grained (e.g., object



type) high-level features. These features are then fused with
the RGB and depth features to form visual representations,
which are contained diverse image information, stored in the
nodes of the topological map. The proposed approach can not
only enhance the agent’s perception of the landmarks in the
environment, but also avoid catastrophic forgetting during
navigation.

The proposed method is evaluated on the widely used
VLN-CE dataset [6], which is the standard benchmark for
continuous VLN environments. Experimental results demon-
strate that incorporating multiple visual features in topolog-
ical maps significantly improves the agent’s performance.
Compared to the previous works that only utilized simple
RGB and depth encodings, MV-Topo reduces Navigation
Error (NE) by 3.5% and achieves competitive Success Rate
(SR) in test unseen split, which proves the effectiveness of
our proposed multiple visual features approach.

II. RELATED WORK

A. Vision-and-Language Navigation

Vision-and-language navigation (VLN) has attracted in-
creasing attention in recent years due to its potential appli-
cations. Several tasks and datasets have been proposed to
advance research in this field. R2R [1] provides detailed
instructions and serves as the most widely used dataset
in VLN. Many datasets extend R2R to cater to diverse
requirements, such as RxR [16] containing instructions for
multiple languages, and R4R [17] with longer paths. VLN-
CE [6] removes the unrealistic assumptions in discrete VLN
settings and transfers discrete paths to continuous envi-
ronments through the Habitat Simulator [18]. In addition,
[19] extends VLN to aerial scenarios. These tasks necessi-
tate the agent’s ability to associate observations with text
for decision-making at each step. Early VLN approaches
employed LSTM for visual-textual alignment [20], [21],
[22]. Subsequent works have utilized attention mechanisms
to enhance the correspondence between visual and textual
modalities [23], [24], [25], [26] and applied powerful lan-
guage models such as BERT [27] and Transformer [28]
to VLN to obtain improved performance. Another line of
works are investigated to build larger training datasets [29],
[30] or augment existing data to increase the diversity of
environments and instructions [3], [31], [32], [33]. In this
work, we focus on improving visual features for VLN-CE.

B. Maps for Visual Navigation

For navigation tasks, it is beneficial to construct various
spatial representations to perceive the environment effec-
tively. Previous studies have constructed semantic maps to
display semantic information in the environment or predict
missing information beyond the agent’s field of view [11],
[12], [34], [35]. However, when it comes to long-range
navigation, constructing static semantic maps disregards the
relationships with other views during navigation and can be
computationally expensive. On the other hand, topological
maps can encode the relationships between different way-
points in the environment, with each node storing unique

visual information [5], [14], [15], [36], [37]. Nevertheless,
topological maps lack the ability to extract rich object
information as well as spatial reasoning. In contrast to these
works, our proposed MV-Topo approach avoids the need for
extensive resource allocation to build semantic maps and
strengthens the ability of topological maps to extract object
information.

C. Visual Representations for Navigation
With the rise of Embodied AI, a great variety of models

have emerged to generate visual representations suitable
for Embodied AI navigation tasks. The large-scale visual-
language model CLIP [38] has demonstrated impressive
performance in extracting object features and has found
widespread application across vision domains [39], [40].
Furthermore, OVRL [41] leverages knowledge distillation
to facilitate visual representation learning for indoor navi-
gation. Numerous works are dedicated to obtaining valuable
information from visual features. SPTM [42] utilizes visual
observations of nodes to determine the furthest reachable
waypoints on a topological map. SplitNet [43] predicts depth
and reconstructs RGB input using encoded visual features.
More recent work, Ego2-Map [44] proposes a navigation-
specific visual representation learning method with semantic
map supervision. Most existing studies lack the ability to
reason about fine-grained semantic correspondences between
specific visual regions in pictures and phrases in text. In this
work, we introduce semantic information and extract visual
features with different emphases for fusion, thus obtaining
comprehensive visual representation which can contribute to
efficient cross-modal alignment.

III. APPROACH

We propose a new visual representation approach MV-
Topo to address the issue of sketchy and coarse visual
information in topological maps. As illustrated in Fig. 2, the
general network architecture is divided into three modules:
mapping, planning, and control. In this section, the definition
of the VLN-CE task and the individual modules comprising
our proposed MV-Topo framework are described and pre-
sented in detail.

A. Task Definition
The problem of Vision-and-Language Navigation in Con-

tinuous Environments (VLN-CE) is focused in this pa-
per [6]. In this task, an agent is required to navigate
in continuous environments based on a natural language
instruction, employing a sequence of low-level actions.
The action space is discretized and consists of FORWARD
(0.25m), TURN LEFT/RIGHT (15°), and STOP. We follow
the panoramic VLN-CE settings adopted in previous works
[7], [9], [10], [15], which exhibit superior performance. At
each step t, the agent has access to panoramic RGB-D
observations consisting of 12 RGB images and 12 depth
images, uniformly spaced at 30° intervals, i.e., (0°, 30°, ...,
330°). Each image has a 90° HFOV at a resolution of 256 ×
256. During a navigation episode, the agent receives a natural
language instruction.
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Fig. 2. An overview of the proposed MV-Topo model. First of all, a topology map that is updated at each step is constructed in the navigation episode.
This map records the fusion features extracted from visual inputs and establishes connections between reachable nodes. Subsequently, the topological map
and the given instruction are fed to the cross-modal planning module to predict a long-term goal. Finally, the control module takes charge of driving the
agent using low-level actions, enabling it to execute the long-term plan incrementally until the target location is reached.
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Fig. 3. The fusion process of multiple visual features.

B. Topological Mapping with Multiple Visual Features

In this paper, the agent gradually builds topological maps
online during navigation. At each step t, the topological
map records information about the currently located node
and the nodes that have been observed but not yet visited.
The previous step’s topology map Gt−1 is then updated
to generate a new topology map Gt = {Nt, Et}. The
map comprises three types of nodes: visited nodes, the
current node, and navigable nodes that have been observed
but left unexplored. These nodes store visual and position
information, while edges indicate the reachability between
nodes, with the weight representing the Euclidean distance.

To generate the reachable nodes for the current node, the
waypoint predictor proposed in previous work is employed
[10]. The depth features and orientation features from the

current position are inputted into the waypoint predictor
to get K candidate waypoints. These candidate waypoints
are then transformed into nodes within the topological map
by a waypoint localization function [15]. Specifically, the
function calculates the Euclidean distance of each candidate
waypoint from all existing nodes in the map, a node in map
is localized if the minimum distance falls below a threshold
γ. If the localized node corresponds to a visited node, the
input candidate waypoint is discarded, and an edge is added
between the current node and the localized node. In the case
of a localized navigable node, we update its information by
averaging the information from all candidate nodes localized
to this navigable node. If no node is localized in the map, the
candidate waypoint is added to the map as a new navigable
node. Furthermore, to represent the STOP action, a ‘stop’
node is incorporated in the map that is connected to all other
nodes.

Multiple visual features. At each time step t, the agent
receives the currently observed RGB images and depth
images. These images are encoded separately using three
different visual encoders to generate distinct visual features.
For the RGB images, a RGB encoder and a semantic encoder
are employed to get the RGB features fr and semantic
features fs, respectively. The semantic encoder is based on a
semantic segmentation model [12]. Instead of directly using
the classification layer output of the semantic segmentation
model, we use the feature from the last layer in the model
as the semantic encoding. Thanks to the skip connection
mechanism in the model, this feature incorporates both fine-
grained low-level semantics (e.g., texture, color) and coarse-
grained high-level semantics (e.g., object type). Regarding
the depth images, we adopt the same depth encoder following
previous VLN-CE works [10], [13], [15] to get the depth
features fd. The features fusion process is shown in Fig. 3.
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Fig. 4. Overall architecture of the cross-modal planning module.

The fusion of the three visual features is achieved through
a simple and effective process. Specifically, to get the key
information, RGB features and semantic features perform
average pooling and max pooling respectively. These features
are then flattened and passed through a Dropout layer and
a linear layer. Subsequently, normalization is applied to
obtain the processed RGB feature vr and semantic feature
vs. Similarly, for the depth features, average pooling is
performed followed by flatten and normalization to obtain the
processed depth feature vd. The three features are summed
to get the final visual features vimg:

f̃r = AP (fr) , f̃d = AP
(
fd
)
, f̃s = MP (fs) (1)

vr = LN
(
Dropout

(
f̃r
))

,

vs = LN
(
Dropout

(
f̃s
))

,

vd = LN
(
f̃d
) (2)

vimg = vr + vd + vs (3)

where AP denotes average pooling, MP denotes max
pooling, LN is the normalization layer, and the superscripts
r, d, s respectively represent RGB, depth, semantic.

The relative angles for images can be represent as oimg =
(sinθo, cosθo, sinφo, cosφo), where θo and φo are the rela-
tive heading and elevation angles to the agent’s orientation.
The fused image features vimg along with the orientation
information oimg are sent to the panoramic encoder to
produce the panoramic encoding panoimg , which includes
comprehensive information about vision and location. Due
to the panoramic setup, panoimg = {panoi}

12
i=1 comprises

visual features from 12 different angles. Taking the average
of the visual features from all angles as the current node’s

visual representation panoimg:

panoimg =

∑12
i=1 panoi
12

(4)

For navigable nodes that have been observed but not
visited, we select the corresponding visual embeddings of
the angles at which they can be observed as their visual
features.

By incorporating semantic features, the representation of
multiple visual features is enriched, thereby enhancing the
agent’s capability to capture semantic information within
images.

C. Cross-Model Planning

As illustrated in Fig. 4, the cross-modal planning module
takes the topology map encoding and instruction representa-
tion as inputs and performs reasoning to predict a long-term
goal node. Ultimately, the module crafts a topological path
plan to the goal.
Text encoding. Based on the experience of prior researches,
BERT [27] is adopted as the text encoder to effectively
extract the feature vector for each word in the instruction.
Firstly, we combine the word embeddings eword

T with the po-
sitional embeddings eposT and the type embeddings etypeT for
individual words in the instruction to get the text embeddings
[45] as below:

embedT = eword
T + eposT + etypeT (5)

ŵ = Dropout (LN (embedT )) (6)

The text embeddings of the instruction with L words are
denoted as Ŵ = {ŵ}Li=1. These embeddings are then fed
into multiple BertLayer layers within the text encoder. The
final text features contain comprehensive representation of
the instruction based on contextual understanding.



Map encoding. To begin with, the fused panoramic visual
features panoimg for each node in the graph are augmented
with the time step encoding estepM and location encoding
elocM , which embeds the most recent visited time step of the
corresponding node, and the relative position with respect
to the current node, respectively. The encoding of node ni

(ni ∈ Nt) is denoted as n̂i:

n̂ = panoimg + estepM + elocM (7)

Cross-model encoding. The encoded node representations
in the map, along with the encoded text features, are jointly
fed into the cross-modal encoder similar to LXMERT [45].
Within each layer of the cross-modal encoder, we employ the
graph-aware self-attention (GASA) mechanism mentioned in
[5] and [15] for the self-attention sublayer, which further
takes into account the topology of the graph to compute
attention as follows:

GASA (X) = S

(
XWq (XWk)

T

√
d

+ EWe

)
XWv (8)

where S denotes the softmax function, X represents node
representations in the map, E is the distance matrix con-
structed by all shortest path pairs derived from the edges
of the topological map, and Wq,Wk,We,Wv are learnable
matrices. The final result is a graph cross-modal attention
encoding that captures the correspondence between the visual
information associated with each node and the corresponding
text.
Planning. The cross-modal attention encoding is passed
through a feed-forward network to predict stop score for
each node in the map. In order to avoid visiting a node
repeatedly, we mask the stop scores of visited nodes and
the current node. Based on the stop scores, the agent selects
an unvisited navigable node ñt in the global topological
map as a long-term goal, which is a previously observed
but unvisited node. To plan a path towards this long-term
goal, the agent executes Dikjstra’s algorithm according to
the distance information recorded in the topology map to
compute the shortest path between the current node and
ñt. Finally, the agent acquires a path plan from the current
node to ñt expressed as Pt = {pn}Nn=1, where pn and N
separately represent the position and number of the route
nodes in the path. If ñt is the ‘stop’ node, the agent stops at
the current location.

D. Control

The control module is responsible for translating the long-
term goal path plan into a sequence of low-level actions for
the agent: FORWARD (0.25m), TURN LEFT/RIGHT (15°),
and STOP, which control the agent to move to the goal.

To reach the subgoal node pn, the agent first acquires
its current state, including information such as position
and orientation. In the second place, the agent calculates
the angle and distance between the current node and pn.
Next, the agent rotates the direction and moves forward in
this direction. Since the agent can only perform low-level
actions, both rotation and forward movement are achieved

by executing multiple low-level actions to reach the correct
direction and distance.

For a sequence of nodes in the path from the current node
to the long-term goal ñt, a similar control process is iterated.
Each time a node is reached, it is removed from the path Pt.
The next node in the path becomes the new subgoal, and the
control steps are repeated until there are no more nodes in
the path. At this time, the long-term goal node ñt is reached,
all operations of the current time step are completed, and the
agent obtains new observations in its new location.

IV. EXPERIMENTS

A. Experimental Setting

Datasets. The experiments are conducted on the VLN-CE [6]
dataset. VLN-CE dataset is converted by Habitat Simulator
[18] from the R2R dataset [1] in discrete VLN, which
is the most widely used dataset for continuous VLN. It
comprises 16,844 path-instruction pairs over 90 real-world
environments from the Matterport3D [46] dataset. VLN-
CE dataset is divided into train, seen validation (val seen),
unseen validation (val unseen) and test splits. We adhere to
the typical evaluation scenarios and report results on two
validation sets. Both val seen and val unseen include novel
paths and instructions, scenes in val seen were observed
during training but scenes in val unseen were not.
Evaluation metrics. An episode is considered successful
if the agent calls STOP action within 3m of the goal.
We evaluate the navigation performance using five metrics.
TL (Trajectory length) measures the average length of the
predicted navigation trajectories. NE (navigation error) mea-
sures the average distance between the final position and the
target, SR (success rate) is the ratio of the agent successfully
reaches the target, OS (oracle success rate) is the proportion
of the closest point in the predicted trajectory to the target
within 3m. SPL (success weighted by path length) integrates
SR and TL, which measures both the accuracy and the
efficiency of navigation. More details of these evaluation
metrics can be found in [1], [47].
Implementation details. The proposed method is imple-
mented on Pytorch [48] framework and Habitat Simulator
[18]. Four NVIDIA RTX 3090 GPUs were utilized for
20,000 iterations (4 days on average), with each GPU concur-
rently running 8 environments. The AdamW optimizer with
a learning rate of 1e-5 is employed. We adopt the pre-trained
model from [15] and apply scheduled sampling to continue
training the model, ultimately selecting the checkpoint with
the highest SPL on val unseen set. For visual encoding,
several pre-trained models are employed. The ViT-B/32
model, pre-trained in CLIP [38], is used to extract overall
RGB features. Additionally, the ResNet-50 pre-trained in
point-goal navigation [49] is used to extract depth features.
Furthermore, a pre-trained semantic segmentation model
[13] based on ResNet-18 was employed to obtain semantic
features for the fusion of low-level and high-level features.
The parameters of these models are fixed.



TABLE I
COMPARISON BETWEEN OUR MV-TOPO AND STATE-OF-THE-ART METHODS ON VLN-CE DATASET.

Methods Val-Seen Val-Unseen Test
TL NE↓ OS↑ SR↑ SPL↑ TL NE↓ OS↑ SR↑ SPL↑ TL NE↓ OS↑ SR↑ SPL↑

Seq2Seq [6] 9.37 7.02 46.0 33.0 31.0 9.32 7.77 37.0 25.0 22.0 8.85 7.91 36 28 25
LAW [50] 9.34 6.35 49.0 40.0 37.0 8.89 6.83 44.0 35.0 31.0 - - - - -
CMTP [14] - 7.10 45.4 36.1 31.2 - 7.9 38.0 26.4 22.7 - - - - -
HPN [7] 8.54 5.48 53 46.0 43.0 7.62 6.31 40.0 36.0 34.0 8.02 6.65 37 32 30
CM2 [12] 12.05 6.10 50.7 42.9 34.8 11.54 7.02 41.5 34.3 27.6 13.90 7.70 39 31 24
CWP-CMA [10] 11.47 5.20 61.0 51.0 45.0 10.90 6.20 52.0 41.0 36.0 11.85 6.30 49 38 33
CWP-RecBERT [10] 12.50 5.02 59.0 50.0 44.0 12.23 5.74 53.0 44.0 39.0 13.31 5.89 51 42 36
Sim2Sim[9] 11.18 4.67 61.0 52.0 44.0 10.69 6.07 52.0 43.0 36.0 11.43 6.17 52 44 37
WS-MGMAP [13] 10.12 5.65 51.7 46.9 43.4 10.00 6.28 47.6 38.9 34.3 12.30 7.11 45 35 28
Ego2-Map [44] - - - - - - 4.94 - 51.8 46.1 13.05 5.54 56 47 41
ETP [15] 11.78 3.95 72.0 66.0 59.0 11.99 4.71 65.0 57.0 49.0 12.87 5.12 63 55 48
MV-Topo (ours) 11.25 3.69 71.3 65.6 59.7 11.85 4.72 63.0 57.5 49.1 12.71 4.94 60 54 48

1
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Go straight and wait by the grey couch.
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Fig. 5. Navigation example using our method MV-Topo.

B. Comparison with the State of the Art

We compare our MV-Topo with state-of-the-art methods
on two validation sets of the VLN-CE dataset in Table I, a
navigation example is shown in Fig. 5. The experimental
results demonstrate that our model outperforms existing
models on val seen in terms of NE and SPL, while obtaining
comparable results with the powerful model ETP [15] in
terms of OS and SR. Regarding performance on val unseen,
MV-Topo yields the best results on SR and SPL, and is
nearly on par with [15] on NE. These results indicate the
excellent performance of our model and prove the effective-
ness of our proposed multiple visual features approach. In
particular, compared with CMTP [14] which also employs
topology, MV-Topo achieves superior performance on all
metrics. CMTP requires a prior scene exploration phase
to gain knowledge of the scene topology, whereas our
approach constructs the topology map online during navi-
gation without any prior exploration process. WS-MGMAP
[13] applies a semantic segmentation model to construct a
fine-grained graph, after which it utilizes the fine-grained

graph to generate a semantic graph, and the two graphs are
fused to obtain a multi-granularity map. In contrast, MV-
Topo employs the topological map as the primary body for
carrying visual information. This structure strengthens the
correlation between views and eliminates the step of fusing
two separate maps, improving the efficiency as well as the
model performance. Additionally, for Ego2-Map [44] which
focuses on visual feature representation, it constructs seman-
tic maps and uses two learnable visual encoders to enrich
egocentric representations. Instead of building a semantic
map, MV-Topo utilizes a semantic segmentation model to
extract fine-grained semantic information from RGB images,
which are later fused with RGB features and depth features.
This approach of integrating multiple visual features reduces
computational costs and enhances performance.
VLN-CE Leaderboard. We also submitted MV-Topo on
the held-out test-unseen set used for VLN-CE leaderboard1.
Table I shows that MV-Topo drops NE by 3.5% while main-

1VLN-CE Leaderboard: https://eval.ai/web/challenges/
challenge-page/719/leaderboard/1966



TABLE II
ABLATION OF VISUAL FEATURES IN TRAINING ON VLN-CE VALIDATION SPLITS.

rgb+depth rgb+depth+semantic Val-Seen Val-Unseen
early fuse late fuse TL NE↓ OS↑ SR↑ SPL↑ TL NE↓ OS↑ SR↑ SPL↑

✓ 11.23 3.94 70.4 64.5 58.3 11.89 4.81 63.5 56.2 47.9
✓ 12.13 3.75 71.9 64.8 58.5 12.49 4.92 60.5 53.6 45.8

✓ 11.25 3.69 71.3 65.6 59.7 11.85 4.72 63.0 57.5 49.1

TABLE III
ABLATION OF POOLING MANNER IN TRAINING ON VLN-CE

VALIDATION SPLITS.

Pooling Val-Seen Val-Unseen
NE↓ SR↑ SPL↑ NE↓ SR↑ SPL↑

avg 3.69 65.6 59.7 4.72 57.5 49.1
max 4.40 62.1 54.3 4.96 56.2 47.8

taining similar SPL and SR, demonstrating that our model
is competitive and multiple visual features are beneficial to
VLN-CE.

C. Ablation Studies

Multiple visual features vs. normal visual features. To
explore the effectiveness of multiple visual features on nav-
igation performance, we conduct ablation experiments. We
compare the impacts of our proposed multiple visual features
with normal visual features on two validation splits of the
VLN-CE dataset. The results of these ablation experiments
are presented in Table II. The agent utilizing late fused
multiple visual features outperforms the agent using normal
visual features on several metrics, improving SR by 1.7%
and 2.3%, improving SPL by 2.4% and 2.5%, and dropping
NE by 6.3% and 1.9% on val seen and val unseen, respec-
tively. The results indicate that incorporating multiple visual
features greatly improves the agent’s ability to utilize visual
information, which is beneficial to navigation. Especially
in seen environments, NE achieved a significant decrease,
which suggests that the agent has a stronger ability to
perceive seen objects.
Early Fusion vs. Late Fusion. We further investigate the ef-
fect of early fusion and late fusion of multiple features on the
performance of the agent. Considering that both semantic and
RGB features are extracted from RGB images, we construct
an early fusion variant. This variant fuses RGB features and
semantic features in advance. Specifically, the two features
are connected and then fed to a convolution layer to obtain a
new feature representing the RGB image, which is later fused
with the depth feature. In comparison, late fusion processes
RGB, semantic, and depth features in parallel and fuses
them at the end. Table II shows that late fusion is more
beneficial and outperforms early fusion in all metrics for both
validation sets, except for OS in val seen. We suspect that the
performance difference between early fusion and late fusion
could be attributed to the additional convolutional operation
performed in early fusion, which condenses both the RGB
features and semantic features, potentially diminishing their
individual contributions in guiding navigation.

Average Pooling vs. Max Pooling. When introducing se-
mantic features, we applied a max pooling layer to process
these features, while previous approaches [4], [15] employed
average pooling for visual features. Therefore, we conduct
a comparative experiment to assess the influence of these
two pooling methods for semantic features on the navigation
performance. The experimental results, presented in Table
III, demonstrate that max pooling surpasses average pooling
in terms of NE, SR and SPL on both validation sets.
The result suggests that for the newly integrated semantic
information, max pooling is the more suitable and effective
choice.

V. CONCLUSION

In this paper, we propose a new visual feature representa-
tion method, MV-Topo, for vision-and-language navigation
in continuous environments. Our approach incorporates fine-
grained semantic features containing rich information into
the visual representation of nodes within the topological map.
By doing so, the agent improves its visual perception and
comprehension of the environment, which benefits the subse-
quent planning and control. Through a series of experiments,
we demonstrate the effectiveness of our proposed method,
and our results are competitive with existing methods.

ACKNOWLEDGMENT
This work was partly supported by the National Natural

Science Foundation of China under Grants No. 62206199
and U2141234, Tianjin Applied Basic Research Project un-
der Grant No. 22JCQNJC00410, Young Elite Scientist Spon-
sorship Program under Grant No. YESS20220409, Alexan-
der von Humboldt Foundation under Grant No. 1226831,
State Key Laboratory of Reliability and Intelligence of
Electrical Equipment under Grant No. EERI-KF2022001,
Shanghai Science and Technology program under Grant No.
22015810300 and Hainan Province Science and Technology
Special Fund under Grant No.ZDYF2024GXJS003.

REFERENCES

[1] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sünderhauf,
I. Reid, S. Gould, and A. Van Den Hengel, “Vision-and-language
navigation: Interpreting visually-grounded navigation instructions in
real environments,” in CVPR, 2018, pp. 3674–3683.

[2] X. Wang, Q. Huang, A. Celikyilmaz, J. Gao, D. Shen, Y.-F. Wang,
W. Y. Wang, and L. Zhang, “Reinforced cross-modal matching and
self-supervised imitation learning for vision-language navigation,” in
CVPR, 2019, pp. 6629–6638.

[3] H. Tan, L. Yu, and M. Bansal, “Learning to navigate unseen environ-
ments: Back translation with environmental dropout,” in NAACL-HLT,
J. Burstein, C. Doran, and T. Solorio, Eds., 2019, pp. 2610–2621.

[4] Y. Hong, Q. Wu, Y. Qi, C. Rodriguez-Opazo, and S. Gould, “Vln bert:
A recurrent vision-and-language bert for navigation,” in CVPR, 2021,
pp. 1643–1653.



[5] S. Chen, P.-L. Guhur, M. Tapaswi, C. Schmid, and I. Laptev, “Think
global, act local: Dual-scale graph transformer for vision-and-language
navigation,” in CVPR, 2022, pp. 16 537–16 547.

[6] J. Krantz, E. Wijmans, A. Majumdar, D. Batra, and S. Lee, “Beyond
the nav-graph: Vision-and-language navigation in continuous environ-
ments,” in ECCV. Springer, 2020, pp. 104–120.

[7] J. Krantz, A. Gokaslan, D. Batra, S. Lee, and O. Maksymets,
“Waypoint models for instruction-guided navigation in continuous
environments,” in ICCV, 2021, pp. 15 162–15 171.

[8] P. Anderson, A. Shrivastava, J. Truong, A. Majumdar, D. Parikh,
D. Batra, and S. Lee, “Sim-to-real transfer for vision-and-language
navigation,” in Conference on Robot Learning. PMLR, 2021, pp.
671–681.

[9] J. Krantz and S. Lee, “Sim-2-sim transfer for vision-and-language
navigation in continuous environments,” in ECCV. Springer, 2022,
pp. 588–603.

[10] Y. Hong, Z. Wang, Q. Wu, and S. Gould, “Bridging the gap between
learning in discrete and continuous environments for vision-and-
language navigation,” in CVPR, 2022, pp. 15 439–15 449.

[11] M. Z. Irshad, N. C. Mithun, Z. Seymour, H.-P. Chiu, S. Samarasekera,
and R. Kumar, “Semantically-aware spatio-temporal reasoning agent
for vision-and-language navigation in continuous environments,” in
ICPR. IEEE, 2022, pp. 4065–4071.

[12] G. Georgakis, K. Schmeckpeper, K. Wanchoo, S. Dan, E. Miltsakaki,
D. Roth, and K. Daniilidis, “Cross-modal map learning for vision and
language navigation,” in CVPR, 2022, pp. 15 460–15 470.

[13] P. Chen, D. Ji, K. Lin, R. Zeng, T. Li, M. Tan, and C. Gan, “Weakly-
supervised multi-granularity map learning for vision-and-language
navigation,” in NeurIPS, vol. 35, 2022, pp. 38 149–38 161.

[14] K. Chen, J. K. Chen, J. Chuang, M. Vázquez, and S. Savarese,
“Topological planning with transformers for vision-and-language nav-
igation,” in CVPR, 2021, pp. 11 276–11 286.

[15] D. An, H. Wang, W. Wang, Z. Wang, Y. Huang, K. He, and L. Wang,
“Etpnav: Evolving topological planning for vision-language navigation
in continuous environments,” arXiv preprint arXiv:2304.03047, 2023.

[16] A. Ku, P. Anderson, R. Patel, E. Ie, and J. Baldridge, “Room-
across-room: Multilingual vision-and-language navigation with dense
spatiotemporal grounding,” in EMNLP, B. Webber, T. Cohn, Y. He,
and Y. Liu, Eds., 2020, pp. 4392–4412.
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