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A B S T R A C T

By representing the embedded components and their interactions in industrial systems as nodes and edges
in a graph, Graph Neural Networks (GNNs) have achieved outstanding results due to their ability to model
statistical correlations. However, these correlations may not capture the true causal relationships within the
data, thereby impairing the model’s performance in fault diagnosis.

To address this issue, an Information-based Gradient enhanced Causal Learning Graph Neural Network
(IGCL-GNN) is proposed for fault diagnosis of complex industrial processes. First, the information theory in
graph representations is theoretically analyzed and the optimization objectives are derived separately for the
causal and non-causal parts of the graph neural network, which decouple it into a multi-objective optimization
problem. Then, to optimize such problem, a causal disentanglement layer is designed in the graph network
that could effectively separate causal and non-causal information in graph representations. Thirdly, a novel
gradient reactivation method is proposed to dynamically filter features from the disentangled layers, thereby
capture the causal representations of graph data more accurately. For robust and efficient optimization, the
multi-objective gradient descent algorithm is employed in this paper. Finally, comparative experiments were
conducted on the three-phase flow facility (TFF) dataset, achieving a fault diagnosis accuracy of 98.42% for
our proposed method.
1. Introduction

With the rapid advancement of technology in the industrial field,
the costs and complexity of operating industrial systems and associ-
ated equipment in factories have accelerated rapidly. Consequently,
there is an urgent need for an effective and reliable diagnostic system
to monitor the operation of industrial systems, replacing manual in-
spection techniques, diminishing the expense of maintenance services,
and ensuring the safe operation of industrial systems in an intelli-
gent and efficient manner [1,2]. Characterized by vast scale and high
complexity, modern industrial systems require the diagnosis of sys-
tems that encompass a variety of measurement devices, with readings
characterized by high dimensionality and complex interactions [3–
5]. Furthermore, due to the interplay between different equipment
units, when a fault occurs, readings from multiple sensors will devi-
ate from their normal state. At the same time, certain sensor signals
respond to different types of faults, indicating that a single category of
fault is associated with multiple sensor signals, which are irregularly
distributed.
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Consequently, the traditional manual fault identification methods
are no longer suitable [6–8]. In the realm of deep learning algo-
rithms [9], it is imperative to employ deep learning architectures
that incorporate multiple layers of nonlinear data processing units
for advanced feature learning [10–12]. Research indicates that the
identification of faults within complex industrial processes is now
recognized as a classification issue that leverages signals from multiple
time series, which is gaining increasing attention in both academia
and industry [13–15]. Hence, mining the interplay of multi-sensor
measurements and integrating information, accurately identifying the
nonlinear relationships, correlations, and control rules of the process,
are crucial for fault diagnosis in large-scale industrial processes.

Existing methods mostly take grid data as input, neglecting the topo-
logical structure of the process and the interactions between monitoring
variables, while in practice, graph-domain data with topological struc-
tures are far more abundant than grid data. Since graphs can reasonably
describe real-world systems, convert some unstructured scenarios into
https://doi.org/10.1016/j.ress.2024.110468
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Acronyms and Abbreviations

𝑆 Non-causal Features
𝑍 Data Representation of the Graph
𝑌 Predicted Attributes
𝑋 Node Features
𝑉 Node Set
𝐸 Edge Set
𝐺 Input Graph
𝐴 Adjacency Matrix
𝐻 Node Representation Matrix
𝑀𝑒𝑑𝑔𝑒 Edge Attention Matrix
𝑀𝑛𝑜𝑑𝑒 Node Attention Matrix
𝑌 Supervised Classification Loss
𝐶 Causal intervention Loss
𝑆 Uniform Classification Loss
𝑡𝑜𝑡𝑎𝑙 Total Loss of IGCL-GNN Model

graphs and use graph-based methods can achieve better performance,
which can be applied to areas such as multi-agent systems [16,17].
Due to the complex interactions between sensor measurements, struc-
tural property graphs are suitable data structures for describing the
characteristics and relationships of sensor data, where each sensor
measurement corresponds to a node, and these nodes are connected by
implicit edges that represent interactions. Moreover, fault information
such as faults and fault propagation can be represented by this graph.
A key task in fault diagnosis is to identify the category of faults [18],
therefore, this task is formulated as a graph-level classification problem
in this study.

By propagating node features across the graph topology, Graph
Neural Networks (GNNs) can learn expressive embeddings useful for
node and graph-level predictive tasks [19,20], which makes GNNs
become a powerful technique for graph-structured data representation
learning [21,22]. Recent research [23,24] have shown that in graph
classification tasks, the salient properties that determine a graph’s
label often originate from specific causal substructures in the graph.
Contemporary graph neural networks (GNNs) learn via end-to-end
backpropagation on structure-rich graph inputs and predominantly
rely on exploiting statistical correlations between graph features and
outputs. As such, GNNs exhibit a tendency to utilize potentially spu-
rious non-causal features for making predictions, as long as they are
associated with the target labels. However, non-causal features that are
correlated with labels but not causally related tend to vary significantly
across domains. Overfitting to one domain may increase spurious cor-
relations, thereby compromising the generalization and reliability of
graph neural networks [25,26].

Analyzing the decision-making process of GNN graph classification
from the perspective of mutual information can provide a better un-
derstanding of how the presence of non-causal features affects the
generalization process of graph neural network learning. According to
research on causal assumptions, non-causal features act as confounding
factors that open backdoor paths [27,28], and falsely associate causal
features with predictions [29]. By modeling the causal features as 𝐶
and the non-causal features as 𝑆, the mutual information between the
input graph 𝐺 and the predicted label 𝑌 can be decomposed as:

(𝑌 ;𝐺) = 𝐼(𝑌 ;𝐶) + 𝐼(𝑌 ;𝑆|𝐶) (1)

here 𝐼(𝑌 ;𝐶) represents the mutual information between the causal
eatures 𝐶 and the prediction 𝑌 , capturing the invariant explanatory
echanism. 𝐼(𝑌 ;𝑆|𝐶) represents the mutual information between the
on-causal features 𝑆 and the prediction 𝑌 given the causal features
, indicating spurious correlations that do not generalize across distri-
utions. As GNNs tend to exploit any statistical association, they tend

o maximize 𝐼(𝑌 ;𝑆) while ignoring the underlying 𝐼(𝑌 ;𝐶). Therefore,

2 
reducing the model’s extraction and prediction of non-causal informa-
tion during the learning process, and enhancing causal information,
will enable the model to extract more valuable relevant information,
thereby reducing hindrance from irrelevant information and improving
the performance of fault diagnosis.

To address this issue, an Information-based Gradient enhanced
Causal Learning in GNN (IGCL-GNN) framework is proposed in this
paper. In accordance with the chain rule of mutual information, this
method breaks down the maximization of mutual information between
the graph and the prediction into two processes: non-causal information
learning and causal information learning. This approach restricts the
extraction of non-causal information during training while reinforcing
the extraction of causal information. Specifically, a composite objec-
tive function has been devised that integrates a term for enhancing
causal features and a regularization term for non-causal features. The
causal term aims to maximize the mutual information 𝐼(𝑌 ;𝐶) between
causal features and the prediction target, thereby extracting invariant
and interpretable causal information. Concurrently, the non-causal
term seeks to minimize 𝐼(𝑌 ;𝑆), reducing dependency on non-causal
information within the correlations. By optimizing this composite ob-
jective, the learning of GNNs can be dynamically steered towards
the stable 𝐼(𝑌 ;𝐶) while avoiding trivial 𝐼(𝑌 ;𝑆). To further refine
these components, an attention-based optimization framework has been
proposed to explicitly and dynamically differentiate between causal
and non-causal subgraphs. A novel gradient reactivation module has
been introduced to ensure the reliability of causal subgraph extraction.
Through joint learning of both information objectives and achieving
Pareto optimality, the model is capable of distilling genuine relevant
information while maximally mitigating irrelevant information. The
key contributions of our research are outlined as follows:

(1) Addressing issues in fault diagnosis leveraging Graph Neural
Networks (GNNs), this study conducts an exploration of causal feature
learning in the context of fault diagnosis (graph classification) from an
information-theoretic perspective, and explicates the influence of these
two types of features on the classification performance.

(2) A novel attention-based causal subgraph extraction module is
proposed to separate causal and non-causal subgraphs, along with a
new gradient reactivation module to ensure the reliability of causal
subgraph extraction.

(3) To address the challenge of handling shortcut features and
causal features, a IGCL-GNN strategy has been introduced, which simul-
taneously enhances the extraction of genuine relevant information and
suppresses the extraction of irrelevant information during the learn-
ing process, and ensures the maximal extraction of genuine relevant
information through the Pareto optimality of two objectives.

(4) Further visualization and in-depth analysis of the IGCL-GNN on
the TFF dataset have demonstrated the interpretability and rationality
of the IGCL-GNN. Comparisons with existing fault diagnosis algorithms
have shown that the IGCL-GNN model can more accurately extract
causal and non-causal features, perform more stable classification.

2. Problem formulation and preliminaries

2.1. Problem formulation

(1) Component Signal Fragment: Signal extraction is generally ob-
tained and composed of its constituent elements. Different components
are located at various positions within the industrial system, each gen-
erating its corresponding signal, thereby forming 𝑛 raw measurement
variables. Over a period of time 𝑡, the signal segment generated by
the 𝑖th component is 𝑠𝑖 = (𝑠1𝑖 , 𝑠

2
𝑖 ,… , 𝑠𝑡𝑖). However, due to the long

operation times of industrial systems, the obtained signal segments span
a large range and are difficult to handle. Therefore, it is necessary to
obtain multiple signal segments through window sliding, which can

𝑡 𝑡−1 𝑡−2 𝑡−𝑚+1
be represented as 𝑤𝑗 = (𝑠𝑖, 𝑠𝑖 , 𝑠𝑖 ,… , 𝑠𝑖 ) ∈ 𝛺. Since signal
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segments are stable over short periods, they can serve as inputs for
graph-structured modeling.

(2) Input Graph: The input graph is denoted by 𝐺 = {𝑉 ,𝐸} with
vertices 𝑣𝑖 ∈ 𝑉 and edges 𝑒𝑖,𝑗 ∈ 𝐸, where vertices represent components
in industrial systems and the edges represent the correlations between
them. The adjacency matrix 𝐴 ∈ R𝑛×𝑛 is used to record the details of the
entire graph, where 𝐴[𝑖, 𝑗] = 1 if edge (𝑣𝑖, 𝑣𝑗 ∈ 𝐸), otherwise 𝐴[𝑖, 𝑗] = 0.
The node features can describe the component signal fragment, which
is expressed symbolically as 𝑋 ∈ R𝑛×𝑚, m is the size of signal fragments.
𝐺𝐶𝑜𝑛𝑣(⋅) represents the GNN module, where 𝐻 ∈ R𝑛×𝑑 represents the
node representation matrix.

2.2. Attention mechanism in GNN

The attention mechanism excels at focusing on key details and
filtering out irrelevant information. Within the context of Graph Neural
Networks (GNNs), this mechanism can be adeptly applied to either
nodes or edges. It aids in identifying the critical segments of the graph
that are most pertinent to the task at hand. These salient subgraphs,
in turn, enhance our ability to achieve the desired objectives more
effectively.

For the edge-level attention mechanism, the attention matrix 𝑀𝑒𝑑𝑔𝑒
∈ R𝑛×𝑛 is constructed using parameters and node representations.
Some studies pass weighted messages to diffuse node information and
aggregate information from other nodes to represent node information.
Then get the updated node representations 𝐻 ′ :

𝐻 ′ = 𝐺𝐶𝑜𝑛𝑣(𝐴 ⊙𝑀𝑒𝑑𝑔𝑒,𝐻) (2)

For the node-level attention mechanism, 𝑀𝑛𝑜𝑑𝑒 ∈ R𝑛×1 denotes
the attention matrix, which can be obtained using a neural network.
To achieve the most discerning node representations, certain studies
incorporate self-attention masks.

𝐻 ′ = 𝐺𝐶𝑜𝑛𝑣(𝐴,𝐻 ⊙𝑀𝑛𝑜𝑑𝑒) (3)

In the above two equations, ⊙ represents the Hadamard product,
that is, the product of corresponding elements. Then, perform further
pooling operations on the output node representation 𝐻𝑜𝑢𝑡 and give the
graph representation ℎ𝐺 by the readout function 𝑓𝑟𝑒𝑎𝑑𝑜𝑢𝑡(⋅).

ℎ𝐺 = 𝑓𝑟𝑒𝑎𝑑𝑜𝑢𝑡(ℎ𝑜𝑢𝑡𝑖 |𝑖 ∈ 𝑉 ) (4)

Finally, the graph representation is transformed into a probability
distribution 𝑧𝐺. The classifier 𝜙 can be used

𝑧𝐺 = 𝛷(ℎ𝐺) (5)

They minimize the following experiential risks, following the law of
‘‘learning to attend’’:

𝐶𝐸 = − 1
||

∑

𝐺∈
𝐲⊤𝐺 log

(

𝑧𝐺
)

(6)

where 𝐿𝐶𝐸 is the cross-entropy loss [30] computed on the training data
. 𝑦𝐺 is the ground-truth label. Given that this empirical loss hinges
on the distributional traits and statistical interdependencies present in
the training data, this learning approach captures predictive shortcut
features rather than identifying the pivotal causal features.

3. Proposed fault diagnosis method

For fault diagnosis in complex industrial systems, an IGCL-GNN
framework is proposed based on multivariate signal segment infor-
mation, which is introduced in four main parts. Firstly, a theoret-
ical analysis of graph representation learning is presented from an
information theory perspective, leading to the proposal of an opti-
mization objective grounded in mutual information. This objective is
designed to enhance the association between prediction outcomes and
causal features, concurrently diminishing the reliance on non-causal
3 
Fig. 1. Structural causal model.

information. Secondly, the disentangle algorithm of causal and non-
causal information is described within the graph representation and
optimize the proposed objective through variational approximation.
Then, how to combine and balance multiple optimization objectives to
achieve optimal predictive performance, robustness, and generalization
is discussed. Lastly, a novel gradient reactivation module that filters
features with greater impact on predictions is introduced to ensure the
reliability of causal subgraph extraction.

3.1. Mutual information optimization

In this section, graph representation learning is analyzed from
an information-theoretic perspective and decompose the information
extraction process in neural networks based on causal assumptions
and the chain rule of mutual information, proposing an optimization
objective grounded in mutual information.

We engaged in a causal examination of GNN modeling and for-
mulated a Structural Causal Model (SCM), as illustrated in Fig. 1.
This model delineates the causal relationships among five key vari-
ables: graph data 𝐺, causal features 𝐶, shortcut features 𝑆, graph
representation 𝑍, and prediction 𝑌 . And the arrows denote the causal
relationships between the variables. he following causal relationships
exist in SCM for graph representation learning:

• 𝐶 ← 𝐺 → 𝑆: 𝐶 represents the causal features of the graph,
which truly reflect the intrinsic properties of the graph data. 𝑆
represents the shortcut features, which are typically non-causal
features caused by data noise. Given that 𝑆 and 𝐶 are concur-
rently present in the graph data, the causal relationships are
inherently established.

• 𝐶 → 𝑍 ← 𝑆: 𝑍 is the data representation of the graph. Traditional
learning strategies use shortcut features 𝑆 and causal features 𝐶
together as inputs to extract discriminative information to obtain
the graph representation 𝑍.

• 𝑍 → 𝑌 : The classifier makes predictions based on the graph
representation 𝑍, obtaining the predicted attributes of the input
graph 𝑌 .

From the perspective of mutual information, the optimization objec-
tive is equivalent to maximizing the mutual information between the
representation and the prediction target 𝐼(𝑍; 𝑌 ) (Objective I), where
Z is the learned representation and Y is the prediction target. Never-
theless, because mutual information captures the correlation between
variables without assessing causality, it can only assimilate the statis-
tical associations between the input features and the labels present in
the training data. Consequently, the optimization of predictive relation-
ships may not be solely driven by the causal features we are interested
in; instead, it could be predominantly influenced by non-causal features
and their indirect effects on prediction. Therefore, the optimization
objective I is equivalent to maximizing the information flow 𝑍 → 𝑌 ,
but it cannot distinguish whether the correlation between S and C is
a causal relationship. To address this issue, the mutual information
objective is decomposed using the chain rule of mutual information and
the aforementioned causal relationships:

𝐼(𝑍; 𝑌 ) = 𝐼(𝐶, 𝑆; 𝑌 ) = 𝐼(𝐶; 𝑌 ) + 𝐼(𝑆; 𝑌 |𝐶) (7)
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Fig. 2. Differences between Objective II and Objective I.
where 𝐼(𝐶; 𝑌 ) is the mutual information between causal features C and
prediction Y, representing true information and causal dependencies.
𝐼(𝑆; 𝑌 |𝐶) is the mutual information between non-causal features S
and prediction Y given C, representing noise and non-causal depen-
dencies that C cannot explain. Due to the entanglement of C and S,
optimizing 𝐼(𝑍; 𝑌 ) will increase 𝐼(𝐶; 𝑌 ) but also increase 𝐼(𝑆; 𝑌 |𝐶),
leading to non-causal dependencies and noise, which negatively im-
pact model generalization. To better optimize causal dependencies, the
optimization objective I is replaced with Objective II:

max 𝐼(𝑍; 𝑌 ) & max 𝐼(𝐶; 𝑌 ) & min 𝐼(𝑆; 𝑌 |𝐶) (8)

Fig. 2 vividly illustrates the optimization effect of Objective II.
This means that while improving prediction accuracy, it can use stable
causal dependencies to enhance robustness and generalization, and
reduce fitting to noise and non-causal dependencies.

3.2. Disentanglement and optimization

The overview of IGCL-GNN is given in Fig. 3.
To optimize this objective, the representation’s causal and non-

causal information is first disentangled. To achieve this, two attention
layers are proposed in this paper that disentangle causal and non-
causal information at the edge and node levels, respectively. Specifi-
cally, given a GNN encoder 𝑓 (⋅) and graph 𝐺 = {𝐴,𝑋}, the encoded
representation can be obtained:

𝐻 = 𝑓 (𝐴,𝑋); (9)

where 𝐻 contains both causal and non-causal information from 𝐺. To
separate them, the causal information extractor 𝐴𝑡𝑡𝐶 and the non-causal
information extraction layer 𝐴𝑡𝑡𝑆 are proposed in our approach, which
learn attention over nodes and edges that are causally and non-causally
relevant from the representation, respectively:
{

𝛼𝑥, 𝛼𝑎 = 𝜎
(

𝐴𝑡𝑡C(𝐻,𝐴)
)

𝛽𝑥, 𝛽𝑎 = 𝜎
(

𝐴𝑡𝑡S(𝐻,𝐴)
) (10)

where 𝛼𝑥, 𝛼𝑎 represent the node and graph level causal attentions,
emphasizing the significance of nodes and edges in establishing causal
relationships. 𝛽𝑥, 𝛽𝑎 represent the corresponding non-causal attentions,
emphasizing the significance in non-causal dependencies. The original
graph G is disentangled into causal graph 𝑍𝐶 and non-causal graph 𝑍𝑆
based on the two attentions:
{

𝑍𝐶 = 𝐺𝐶𝑜𝑛𝑣𝐶
(

𝐴 ⊙ 𝛼𝑎, 𝑋 ⊙ 𝛼𝑥
)

𝑍𝑆 = 𝐺𝐶𝑜𝑛𝑣𝑆
(

𝐴 ⊙ 𝛽𝑎, 𝑋 ⊙ 𝛽𝑥
) (11)

Utilizing disentangled causal representations 𝑍𝐶 and non-causal
representations 𝑍𝑆 , Objective II can be optimized. As detailed in the
discussion of Section 3.1, to enhance the learning of true causal de-
pendencies, the maximization of 𝐼(𝐶; 𝑌 ) is aimed for. However, due to
4 
the high complexity of mutual information optimization, a variational
lower bound is derived and minimized.:

𝐼(𝐶; 𝑌 ) ≥ 𝐸𝑝(𝑐, 𝑦)[𝑙𝑜𝑔 𝑞(𝑦|𝑐)] −𝐻(𝑌 ) (12)

where 𝑞(𝑦|𝑐) is a conditional probability distribution that can be mod-
eled by a classifier 𝑓 (⋅); 𝐻(𝑌 ) is the entropy of 𝑌 , which is a constant;
𝐸𝑝(𝑐, 𝑦)[𝑙𝑜𝑔 𝑞(𝑦|𝑐)] is the expectation over the classification results of the
overall causal features. The lower bound of 𝐼(𝐶; 𝑌 ) can be optimized
by maximizing 𝐸𝑝(𝑐, 𝑦)[𝑙𝑜𝑔 𝑞(𝑦|𝑐)], the causal intervention loss 𝐶 is
optimized to enhance the learning of causal dependencies in this paper:

𝐶 = −
∑

𝑐∈𝐶

∑

𝑦∈𝑌
𝑝(𝑐, 𝑦)𝑙𝑜𝑔 𝑞(𝑦|𝑐) (13)

Similarly, to maximize 𝐼(𝑍; 𝑌 ) and improve overall predictive per-
formance, the cross-entropy loss of the global representation, utilizing
both causal and non-causal information, is optimized:

𝑌 = −
∑

𝑧∈𝑍

∑

𝑦∈𝑌
𝑝(𝑧, 𝑦)𝑙𝑜𝑔 𝑞(𝑦|𝑧) (14)

Then, to minimize 𝐼(𝑆; 𝑌 |𝐶) and reduce the impact of non-causal
features such as data noise on predictions, 𝑆 is made independent
of 𝑌 by minimizing the KL divergence between 𝑍𝑆 and a uniform
distribution:

𝑆 = 𝐾𝐿(𝑆 ∥ 𝑢(𝑆)) = −
∑

𝑠∈𝑆
𝑝(𝑠)𝑙𝑜𝑔

𝑝(𝑠)
𝑢(𝑠)

(15)

where KL is the KL divergence, 𝑝(𝑠) is the distribution of the non-
causal representation 𝑆, and 𝑢(𝑆) is the uniform distribution over 𝑆.
Since the uniform distribution has the maximum entropy, minimizing
𝐿𝑆 encourages 𝑆 to not contain information about 𝑌 , thereby mini-
mizing the dependency between the non-causal representation 𝑆 and
the prediction 𝑌 . By optimizing the aforementioned loss functions,
overall predictive accuracy and reliance on causal features can be
improved, while reducing reliance on non-causal features. However,
despite achieving the transition from mutual information correlations
to causal dependencies, there are still complex interactions between
these objectives, and there may even be conflicts between reducing
non-causal dependencies and enhancing overall predictive accuracy.

3.3. Combinations and tradeoff

Given the pronounced correlation between the complexity of causal
dependencies and optimization objectives, optimization scheme is con-
ceptualized as a multi-objective optimization problem in this paper.
Mathematically, our problem can be articulated as:

min
𝜃∈𝛩

(𝜃) = min
𝜃∈𝛩

(𝑌 (𝜃),𝐶 (𝜃),𝑆 (𝜃)) (16)

The resolution of multi-objective optimization problems is typi-
cally geared towards achieving a holistic optimum, known as Pareto
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Fig. 3. Overview of IGCL-GNN.
optimality. Pareto optimality denotes the optimal trade-off among mul-
tiple objectives. Within the context of our proposed problem, Pareto
optimality can be delineated as follows:

Definition 1 (Pareto Optimality). For the multi-objective optimization
problem min𝜃∈𝛩

(

𝑌 (𝜃),𝐶 (𝜃),𝑆 (𝜃)
)

, a solution 𝜃∗ ∈ 𝛩 is Pareto
optimal if there does not exist another solution 𝜃 ∈ 𝛩 dominates it,
i.e.,

𝜃 ∈ 𝛩 s.t. 𝑖(𝜃) ≤ 𝑖
(

𝜃∗
)

for all 𝑖 = 𝑌 , 𝐶, 𝑆

and 𝑗 (𝜃) < 𝑗
(

𝜃∗
)

for some 𝑗 = 𝑌 , 𝐶, 𝑆
(17)

Here, 𝛩 represents the set of feasible solutions. This implies that a
Pareto optimal solution cannot be improved in one objective without
at least one other objective deteriorating. The collection of all Pareto
optimal solutions is referred to as the Pareto Frontier.

Although Pareto optimality [31,32] is regarded as possessing many
desirable qualities and serves as the ultimate goal for numerous multi-
objective problems, it is not applicable to our problem with causal
assumptions. If Objective II has achieved Pareto optimality, and fur-
ther improvements in max 𝐼(𝑍; 𝑌 ) are possible, then the optimiza-
tion of max 𝐼(𝑍; 𝑌 ) must be halted to avoid undermining max 𝐼(𝐶; 𝑌 )
and min 𝐼(𝑆; 𝑌 |𝐶). In other words, enhancing causal dependencies and
reducing non-causal dependencies may impede the improvement of
overall prediction, which is clearly contrary to our motivations and
causal assumptions. Therefore, the objectives are reformulated as:

𝜃 ∈ 𝛩 max 𝐼(𝑍; 𝑌 ) 𝑠.𝑡. 𝜃 ∈ 𝑃 (𝐼(𝐶; 𝑌 ),−𝐼(𝑆; 𝑌 |𝐶)) (18)

This implies that the predictive relevance of the representation is
maximized under the premise of achieving optimal causal dependencies
for predictive information. To attain Pareto optimality that maximizes
causal dependencies and minimizes non-causal dependencies, a Multi-
Objective Gradient Descent Algorithm (MGDA) [33] is employed in
optimizing  (𝜃) and  (𝜃). MGDA is a gradient-based multi-objective
𝐶 𝑆

5 
optimization algorithm that progressively balances the gradients of
multiple objective functions at each iteration.

The crux of MGDA lies in identifying a direction 𝑑 at each iteration
such that a small step 𝜂 along 𝑑 can improve all objective functions.
In our context, given that there are only two sub-objectives 𝐶 (𝜃)
and 𝑆 (𝜃), the MGDA solution approach can be simplified. First, the
gradients of the two sub-objectives ∇𝐶 (𝜃) and ∇𝑆 (𝜃) are computed,
and then the angle 𝜃 between the two gradients is calculated:

𝛼 = 𝑎𝑟𝑐𝑐𝑜𝑠
∇𝐶 (𝜃)𝑇 ∇𝑆 (𝜃)
∇𝐶 (𝜃)∇𝑆 (𝜃)

(19)

By calculating 𝛼, the direction in which both objectives can descend
concurrently is ascertained. For the Pareto optimal solution 𝜃∗, it can be
utilized as a constraint to optimize 𝐼(𝑍; 𝑌 ) This corresponds to finding
a solution on the Pareto frontier that maximizes 𝐼(𝑍; 𝑌 ) to obtain the
final representation 𝑍∗ for the predictive task. Through this multi-
objective optimization process, a stable trade-off between predictive
relevance and causal dependency is achieved.

3.4. Gradient reactivation

In this paper, a gradient reactivation method is further proposed to
filter non-causal subgraphs, thereby enhancing the precision of sepa-
rating causal and non-causal subgraphs. After obtaining the non-causal
subgraph, nodes and edges with substantial gradients are reactivated
back into the causal subgraph, indicating that they significantly con-
tribute to the prediction. For the derived non-causal subgraph 𝑍𝑆 ,
the objective is to extract the erroneously assigned causal components
from it. The loss incurred from predicting the true labels using 𝑍𝑆 is
computed:

𝑡 = −
∑

𝑠∈𝑆

∑

𝑦∈𝑌
𝑝(𝑠, 𝑦)𝑙𝑜𝑔 𝑞(𝑦|𝑐) (20)

The cross-entropy loss 𝐿𝑡 does not participate in backpropagation
and is solely utilized for the computation of gradients 𝑀 and 𝑀 .
𝑛𝑜𝑑𝑒 𝑒𝑑𝑔𝑒
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Fig. 4. Overall structure and sensor distribution of the three-phase flow facility.

Elements with substantial gradients within 𝑀𝑛𝑜𝑑𝑒 and 𝑀𝑒𝑑𝑔𝑒 should not
be included in the non-causal subgraph. They are removed from the
non-causal subgraph, with the new non-causal subgraph masks denoted
as 𝑀

′
𝑛𝑜𝑑𝑒 and 𝑀

′
𝑒𝑑𝑔𝑒. Subsequently, two additional losses are introduced

to ensure that elements with significant gradients are not encapsulated
within the non-causal subgraph.

𝐿𝑜𝑠𝑠𝑛𝑜𝑑𝑒 = (𝑀𝑛𝑜𝑑𝑒 −𝑀 ′
𝑛𝑜𝑑𝑒)

2

𝐿𝑜𝑠𝑠𝑒𝑑𝑔𝑒 = (𝑀𝑒𝑑𝑔𝑒 −𝑀 ′
𝑒𝑑𝑔𝑒)

2 (21)

So, the final loss framework becomes:

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝑌 + 𝜆1 ⋅ 𝑆 + 𝜆2 ⋅ 𝐶 + 𝜆3 ⋅ 𝐿𝑜𝑠𝑠𝑛𝑜𝑑𝑒 + 𝜆4 ⋅ 𝐿𝑜𝑠𝑠𝑒𝑑𝑔𝑒 (22)

This loss framework not only automatically optimizes 𝜆1, 𝜆2 through
Multi-Objective Gradient Descent Algorithm (MGDA), but also offers
flexibility through the tuning of hyperparameters 𝜆3, 𝜆4. This allows for
a nuanced approach to enhancing causal relationships and minimizing
non-causal dependencies, all aimed at maximizing predictive accuracy
and model robustness.

4. Experiment results and comparisons

4.1. Datasets

The TFF [34], designed by Cranfield University, is one of the typical
industrial systems. This system is a genuine and complex industrial-
scale test bench used for controlling a pressurized system, equipped
with 24 component sensors. These sensors are strategically positioned
at various critical locations within the system to detect the density,
temperature, pressure, and flow rate at different key points, thereby
measuring the flow rates of water, oil, and air. An illustration of
this system is shown in Fig. 3. Furthermore, the system is capable of
functioning across various operating conditions and offers experimental
data. Details of the sensors can be found in [34], and the TFF dataset
is available for download at the following link TFF (see Fig. 4). To
obtain data under different operating conditions, the data acquisition
setup included 20 sets of process inputs, which were composed of
combinations from the system’s four air flows and five water flows,
and three sets of data were obtained through simulation. For the fault
dataset, the system simulated a total of six typical faults that might oc-
cur in practice. During the fault data collection process, the equipment
initially operated in a normal state, then faults were injected. Once the
faults developed to a certain extent, the fault injection was stopped,
and the system gradually returned to a healthy state. Therefore, the
data generated for each fault type contains transition information from
the initial state to the fault state, including the process of the fault
developing from minor to severe. Moreover, to ensure a comprehen-
sive and rich dataset, the data collection considered the equipment
under both steady-state and varying conditions, hence each type of
6 
Table 1
Fault categories and corresponding sample sizes in the TFF dataset.

Fault class Fault type Numbers of samples

0 Normal 667
1 Air line blockage 194
2 Water line blockage 172
3 Top separator input blockage 433
4 Open direct bypass 226
5 Slugging conditions 105
6 Pressurization of the 2′′line 96

Table 2
The bold values indicate that the IGCL-GNN model outperforms other comparison
methods in terms of Accuracy, Micro F1, and Macro F1.

Accuracy Micro F1 Macro F1

GAT 77.25 86.39 75.97
BHGNN 94.51 92.82 92.56
CTA-GNN 96.30 96.72 94.73

IGCL-GNN 98.42 98.39 97.94

fault includes multiple datasets. The data sampling frequency is 1 Hz.
Additionally, this paper employs the min–max normalization method
for each component’s data, where 𝑥 = (𝑥−𝑥𝑚𝑖𝑛)∕(𝑥𝑚𝑎𝑥 −𝑥𝑚𝑖𝑛). To better
extract fault feature information, normal data is removed from the fault
data, with each sample containing 50 s of temporal information. The
samples are randomly divided, with 0.9 allocated to the training set and
0.1 reserved for the test set. The fault and normal types in the dataset,
along with their corresponding sample counts, are shown in Table 1.

4.2. Experimental settings

4.2.1. Current baseline methods

Current Baseline Methods: To demonstrate the performance of our
IGCL-GNN method in real industrial systems, the IGCL-GNN method
is compared with existing baseline methods: Graph attention networks
(GAT) [35], Bayesian hierarchical graph neural network (BHGNN) [36],
causal-trivial attention graph neural network (CTA-GNN) [37].

(1) GAT: GAT learns based on node features to obtain edge weights
and measure the importance of edges. When unstructured multivariate
time series data is constructed into a fully connected graph, GAT can
be directly applied to multivariate time series data.

(2) BHGNN: BHGNN captures epistemic and aleatoric uncertainties
by employing a variational dropout approach and adjusts the strength
of temporal consistency constraints using the uncertainty information
of each sample. Additionally, the BHGNN method models process data
as a hierarchical graph, integrating data with domain knowledge by
fully leveraging interaction-aware modules and the physical topology
of industrial processes.

(3) CTA-GNN: CTA-GNN first generates representations of nodes
and edges by estimating soft masks, then obtains causal and shortcut
features from the graph through disentanglement, and finally com-
bines each causal feature with various shortcut features through the
adjustment of the backdoor criterion parameterized by causal theory.

4.2.2. Evaluation indicators and parameter settings
To demonstrate the superiority of IGCL-GNN, Accuracy, Micro F1,

Macro F1, and the confusion matrix are employed as metrics for com-
parison with other methods. Additionally, extensive experiments are
conducted on various baseline methods and the IGCL-GNN model,
comparing them to select the hyperparameters that exhibit the best
performance and testing outcomes. For the TFF dataset, the input graph
comprises 24 nodes, corresponding to 24 sensors. The feature size

https://www.mathworks.com/matlabcentral/fileexchange/50938-a-benchmark-case-for-statistic-processmonitoringcranfield-multiphase-flow-facility


R. Liu et al. Reliability Engineering and System Safety 252 (2024) 110468 
Fig. 5. Confusion matrix comparison. (a) GAT. (b) BHGNN. (c) CTA-GNN. (d) IGCL-GNN.
Fig. 6. Accuracy and F1 score comparison. (a) Accuracy. (b) Micro F1 score. (c) Macro F1 score.
Fig. 7. Accuracy per class for four methods.

of each node is 50, representing the captured 50-s signal segments.
Additionally, the maximum number of epochs is set to 100, with a
learning rate of 0.001. In the loss function, 𝜆3 is assigned a value of
0.5, and 𝜆4 is also assigned a value of 0.5.

4.3. Fault classification performance

Utilizing the confusion matrix derived from the testing phase, it is
possible to evaluate the performance of various fault diagnosis meth-
ods. By visualizing the confusion matrices, one can gain a clear insight
into the diagnostic capabilities of each model across different fault
categories. The visual representations of the confusion matrices for
the respective models are depicted in Fig. 5. As the training process
progresses, the performance on the test set is also subject to change. The
Micro F1 scores, Macro F1 scores, and accuracy metrics are recorded
during the testing phase to observe their variations throughout the
process. The F1 score is a crucial measure of a model’s classification
accuracy, offering a balanced assessment by combining precision and
recall. The Micro F1 score aggregates predictions across all categories
7 
to provide an overall accuracy metric, which is particularly useful
for datasets with class imbalances as it mitigates the disproportionate
impact of minority classes. In contrast, the Macro F1 score calculates
the average F1 score for each category, ensuring a fair evaluation of all
categories, including those with fewer samples, and helps pinpoint ar-
eas where the model underperforms. The results of the Micro F1 scores,
Macro F1, and accuracy ratings are shown in Fig. 6. Simultaneously,
we utilized Fig. 7 to compare the accuracy of various methods across
different fault types. Table 2 displays a comparison of the classification
performance of different models on the TFF dataset.

By comparing its performance with GAT, the IGCL-GNN model
demonstrates the ability to comprehensively leverage the raw informa-
tion of nodes and learn the interrelationships among node information,
leading to enhanced performance. In contrast, the GAT model uses an
attention mechanism to weigh and aggregate the features of neighbor-
ing nodes within the graph, yet it overlooks the graph’s underlying
structure. Unlike the GAT, which employs fully connected graphs,
the IGCL-GNN model utilizes graph structure descriptions specific to
various fault types as its input, as illustrated in Fig. 8. Consequently,
GAT does not account for the interactions between various components.
Given that in industrial systems, intricate interactions among different
components constitute a significant aspect of fault characteristics, this
limitation hinders GAT’s ability to differentiate between distinct fault
types effectively.

BHGNN takes into account the correspondence between the model
architecture and the actual process system, representing a fault di-
agnosis method within the Bayesian Deep Learning(BDL) framework.
BHGNN constructs a hierarchical graph of the industrial process to
extract fault features, primarily consisting of two-tiered structures: the
sensor-level graph and the unit-level graph. Additionally, it employs
a variational dropout method to capture epistemic and aleatoric un-
certainties, and utilizes the uncertainty information of each sample
to adjust the strength of the temporal consistency (TC) constraints.
However, the BHGNN may exhibit overconfidence in the uncertainty
information of the output probabilities and among samples, resulting
in classification performance that is inferior to IGCL-GNN. Therefore,
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Fig. 8. Graph structure illustration.
Fig. 9. Use the t-SNE method to visualize the results. (a) Original graph data space. (b) 𝑍𝐶 containing only causal information. (c) 𝑍𝑆 containing only non-causal information.
(d) 𝑍 containing both causal and non-causal information.
a framework capable of introducing high uncertainty for these samples
is necessary for reliable fault diagnosis.

CTA-GNN introduces a causal GNN framework that filters shortcut
features while mining causal features through three steps: estimating
soft masks, disentangling, and causal intervention. CTA-GNN employs
8 
an attention module to learn both causal and shortcut features from a
given graph, although the shortcut features may still be contaminated
with causal features. Additionally, manually tuning the hyperparame-
ters, specifically 𝜆1 that controls the degree of disentanglement and 𝜆2
that governs the extent of causal intervention, is time-consuming and
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Fig. 10. Micro F1 score change comparison. (a) GAT. (b) BHGNN. (c) CTA-GNN. (d) IGCL-GNN.
labor-intensive, making it challenging to identify the optimal solution
(see Fig. 9).

Fig. 6 displays the simplified two-dimensional feature maps and the
learned fault characteristics of the IGCL-GNN model obtained through
the t-Distributed Stochastic Neighbor Embedding (t-SNE) [38] method.
Specifically, (a) represents the data space of the initial graph, (b)
depicts the representation 𝑍𝐶 that contains only causal information,
(c) illustrates the representation 𝑍𝑆 that contains only non-causal
information, and (d) shows the representation 𝑍 that encompasses both
causal and non-causal information. Apparently, due to the widespread
presence of environmental noise and varying degrees of faults, the
sample features for the same type of fault are diverse. By maximizing
the mutual information 𝐼(𝐶; 𝑌 ), the intra-class relevance and predictive
relevance of 𝑍𝐶 after classification are further increased, enhancing
the dependence on 𝐶. At the same time, the clustering effect of 𝑆 is
reduced, indicating that minimizing 𝐼(𝑆; 𝑌 ) has successfully decreased
the correlation between non-causal features and predictions. It can
also be seen that the correlation between the joint representation 𝑍
and predictions has significantly increased, fully demonstrating the
effectiveness of the objective 𝐼(𝑍; 𝑌 ). After learning through the IGCL-
GNN model, features of the same fault are clustered together, enabling
efficient classification.

Additionally, given the challenges in estimating mutual information,
we have derived a variational bound that enables us to transform
the aforementioned objectives into a manageable loss function. By
employing the Multi-Objective Gradient Descent Algorithm (MGDA), a
stable and effective transition from information correlation to causal
dependence is achieved. MGDA, as a multi-objective optimization algo-
rithm, eliminates the need to preset weights for individual objectives,
efficiently navigating the solution space using gradient information.
It reliably converges to the Pareto optimal front, thereby significantly
enhancing the efficiency and adaptability of the optimization process.
9 
According to the outcomes of our experiments, the IGCL-GNN model
shows better fault diagnostic performance on the TFF dataset than the
baseline methods. The IGCL-GNN model more precisely captures causal
and non-causal features, notably strengthens the association between
the predictions and causal characteristics, diminishes the dependence
on non-causal features, and more accurately identifies the underly-
ing causes of faults in industrial systems, culminating in excellent
diagnostic performance.

4.4. Ablation experiment

To demonstrate the model’s generalization capability, this paper
assumes that two sensors fail, causing all the signal segments they
generate to be zeroed out. Under this scenario, the KNN algorithm [39]
is applied to the signal segments from the 24 components to identify
nodes that are close to each other or functionally similar and categorize
them into groups. Subsequently, a new topological graph is computed
and fed into the original model. Normal conditions are defined as
known conditions, while sensor failure conditions are defined as un-
known conditions. The Micro F1 score is used as the metric to evaluate
changes in model performance, as shown in Fig. 10. The results in-
dicate that the proposed IGCL-GNN model performs the best under
unknown conditions, with diagnostic accuracy essentially consistent
with that under known conditions. For the CTA-GNN model, there
may be some discrepancy from the results under known conditions,
possibly due to inadequate control of the disentanglement and causal
intervention degrees. For the BHGNN model, the sensor failure has a
significant impact on the model’s classification effectiveness, indicating
that the BHGNN model is not sufficiently stable. These experiments
conclusively illustrate that the IGCL-GNN model has strong stability and
adaptability.
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5. Conclusion

This paper firstly transforms the complex industrial fault diagno-
sis problem into a graph recognition task, followed by a theoretical
analysis of graph representation learning from an information-theoretic
perspective, aiming to enhance the generalization of graph neural
networks by optimizing causal dependencies. In industrial fault di-
agnosis, the final prediction results should primarily rely on causal
features, but in reality, they are often disturbed by non-causal factors.
Therefore, through information-theoretic analysis, the limitations of
relying on spurious correlations are identified in this paper, and an
objective is introduced that maximizes causal mutual information while
minimizing non-causal terms. The optimization objective is achieved
through a causal disentanglement module and multi-objective opti-
mization. To ensure the reliability of the separation between causal
and non-causal subgraphs, a gradient reactivation module is proposed
to constrain the correlation between non-causal subgraphs and actual
labels. The IGCL-GNN model, as evaluated on the TFF dataset, has
shown commendable results in fault diagnosis tasks. It has made sig-
nificant advancements in fault diagnosis, exhibiting enhanced stability
and adaptability compared to other benchmark methods.

Fault diagnosis often entails open-set recognition challenges, given
the inherent unpredictability of machinery and operational environ-
ments. Looking ahead, research should focus on leveraging IGCL-GNN
for open-set recognition tasks. This involves not only pinpointing
known faults with precision through causal features but also adeptly
detecting previously unseen faults, thereby preventing them from re-
maining undetected and potentially disrupting industrial operations.
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