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Abstract—Explainability is a pivotal factor in determining
whether a deep learning model can be authorized in critical
applications. To enhance the explainability of models of end-to-
end object DEtection with TRansformer (DETR), we introduce
a disentanglement method that constrains the feature learning
process, following a divide-and-conquer decoupling paradigm,
similar to how people understand complex real-world problems.
We first demonstrate the entangled property of the features
between the extractor and detector and find that the regression
function is a key factor contributing to the deterioration of
disentangled feature activation. These highly entangled features
always activate the local characteristics, making it difficult to
cover the semantic information of an object, which also reduces
the interpretability of single-backbone object detection models.
Thus, an Explainability Enhanced object detection Transformer
with feature Disentanglement (DETD) model is proposed, in
which the Tensor Singular Value Decomposition (T-SVD) is used
to produce feature bases and the Batch averaged Feature Spectral
Penalization (BFSP) loss is introduced to constrain the disentan-
glement of the feature and balance the semantic activation. The
proposed method is applied across three prominent backbones,
two DETR variants, and a CNN based model. By combining two
optimization techniques, extensive experiments on two datasets
consistently demonstrate that the DETD model outperforms the
counterpart in terms of object detection performance and feature
disentanglement. The Grad-CAM visualizations demonstrate the
enhancement of feature learning explainability in the disentan-
glement view.

Index Terms—Deep learning, Explainability, Feature disentan-
glement, Hybrid Transformer model, Object detection.

I. INTRODUCTION

OBJECT detection is one of the most crucial tasks of AI
systems [1]. Over the years, various object detection

models based on deep learning have been developed thanks
to the great representation ability the Deep Neural Network
(DNN) has. Transformer based models are the key members
of them. Transformer is expanded into the object detection area
with state-of-the-art (SOTA) performance after its birth in the
Natural Language Processing (NLP) area [2]. Some excellent
object detection models have been produced, such as DETR
[3] and its derivatives [4], [5]. DETR views object detection as
a direct set prediction problem without antique hand-designed
components. It achieves higher performance attributed to the
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synergy of the local feature extraction ability of Convolutional
Neural Network (CNN) and the global feature integration
power of Transformer. Unfortunately, the inherent lack of
explainability in deep learning causes these models to fail in
critical areas, such as autonomous driving, medical diagnosis,
and justice [6]–[8]. Naturally, it is necessary to explore the
operational mechanism of DNNs so that people can understand
and trust these high-performance models.

Explainability is a critical component of trustworthy AI [9].
Various methods have been proposed to make the model more
explainable. However, most of them cannot reach an equilib-
rium between explainability and performance [10]. What we
believe is that an effective explainability-enhancing approach
should run on the basis of revealing the mechanism of the
model, just as scientists analyze a complex task, such as
solving a physical equation. Divide-and-conquer [11], [12]
is a philosophical methodology to address complex scientific
issues including control theory [13], mathematics [14], and
law [15]. Specifically, the process involves learning and dis-
entangling, understanding and controlling, and then entangling
and applying. This forms a pipeline within this methodology.
The complex subject is disentangled into some orthogonal
(or even approximate) directions, and each direction can be
seen as a simple but specific description of the subject [16],
[17]. After the meticulous analysis of each direction, humans
can develop a nuanced understanding of this complex subject
and finally entangle all directions into a more transparent and
explainable model to carry out downstream tasks. Typically,
such an interpretable approach does not damage the models
but even benefits them because subsequential optimization
and control strategies can be applied to these decomposable
models. Beyond that, the disentanglement or orthogonalization
makes the feature space more parsimonious and structured,
which spontaneously boosts the explainability and discrimi-
nating power of the model [18].

The deep learning models can also be seen as a kind of
complex mapping function. Classical DETR integrates CNN
and Transformer, and the interaction between both contributes
to DETR’s climactic performance. CNN can be viewed as
a feature extractor that maps RGB images into a high-
dimensional semantical feature space. The Transformer then
computes the attention value among all feature tokens to
find the object vectors. DETR’s backbone can be considered
a learning and disentangling module, while the Transformer
detector can be viewed as a token entangling mixer.

Literature has shown that the particular disentangled di-
rections of the feature space or parameter space have their
own semantic meaning related to the real world, such as
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generative models [19]–[21] and discriminative classification
models [22], [23]. This indicates that we can enhance the
explainability by analyzing these orthogonal directions. In the
field of object detection, the design of multiple backbones
that directly decouple different semantic information, such as
separating classification and regression or dividing features
into invariant and specific categories, has led to improved per-
formance and interpretability [21], [24], [25]. These pioneers
strengthen our confidence in enhancing the explainability of
the object detection Transformer models by introducing the
feature disentanglement.

DETR’s architecture enables better feature learning. The se-
mantical features extracted by CNN are some specific descrip-
tions of the whole image. However, as for single-backbone
object detection models (DETR is a typical example of such
models), the single feature extractor needs to simultaneously
handle the object classification task and the coordinates regres-
sion task. The learned high-level metaphysical semantics are
usually indistinguishable as they are entangled with each other.
Moreover, learned features often exhibit a tendency to overfit
the dataset and become entangled with spurious associations
[26]. All of these factors impede the interpretability analysis
of object detection models. Therefore, conducting disentan-
glement analysis on single-backbone object detection models
and proposing decoupling methods undoubtedly contributes to
enhancing model interpretability.

To formally investigate the operational mechanism of ob-
ject detection models, this study defines the Batch averaged
Feature Inner Product (BFIP) and Batch averaged Feature
Cosine Similarity (BFCS) to measure the orthogonality which
represents the degree of disentanglement among features. We
conduct a detailed analysis of the classification and regression
mechanisms from the feature disentanglement perspective,
making the operation of the object detection model more
transparent. Based on a comparison of two similarity mea-
surement standards, we find that regression leads to feature
imbalance, manifesting as a significant disparity in feature
activations. Furthermore, BFSP loss is proposed to enhance the
feature disentanglement and balance. After that, explainability-
enhanced Hybrid Transformer models are built by introducing
Tensor Singular Value Decomposition (T-SVD) [27], [28] to
the DETR framework. Optimization strategies additionally
boost the performance of object detection. Six variants of the
model are constructed by associating with classical architec-
tures, including CNN, Transformer, Multi-Layer Perceptron
(MLP), Deformable DETR, DINO, and CNN based detection
framework. In summary, our contributions to this work are:

• We reveal the difference between classification and re-
gression from the novel view of feature disentanglement.
Regression function is found as a factor leading to feature
imbalance. This helps explain the mechanism of the
object detection.

• BFSP loss is proposed to make features between the
extractor and detector more decoupled and balanced.
Kinds of disentangling rule-inspired hybrid Transformer
models are built based on T-SVD and BFSP.

• Optimization strategies based on the reconstruction of
decoupled feature bases and progressive training methods

are proposed to upgrade the object detection performance.

Furthermore, extensive experiments on two benchmark
datasets show that DETDs outperform their baselines in terms
of object detection performance, generalization, and feature
disentanglement. Visualizations further validate the enhancing
explainability.

II. RELATED WORK

The weak explainability of deep learning models severely
limits the applications in some rigorous areas, inspiring many
meaningful pieces of research, which can be called XAI [29],
[30]. Research on XAI can mainly be divided into active and
passive explanation approaches [7], [31]. The difference lies
in that the active methods want to directly build transparent
models or other forms of models that can output the decision
results and the decision-making reasons simultaneously. In
contrast, the passive techniques focus on externally giving
reasons why an already modeled DNN outputs specific de-
cisions. By introducing causality [26], rule [32], bayesian
theory [33], or other deductive evolution methods [34], [35],
the results of the active interpretable models [10] can be
preliminarily concluded by those mathematical or logical
methods. Beyond that, some active methods explain the DNN
by adding constrained knowledge [23], prior loss functions
[36] or even setting up additional interpretation neural network
branches [37]. However, each approach is limited by its own
shortcomings, such as the insufficient quantity of knowledge
and performance degradation.

In contrast, the passive explanation methods mainly want
to decipher the inner mechanism of neural networks. They
don’t change the original black box substantive characteristics.
Zhang et al. [38] and Chen et al. [39] utilize the quantification
of information to measure explainability. Feature based visu-
alization methods, such as Saliency [40] and Grad-CAM [41],
have been widely used for analyzing the regions that have
the most significant impact on the model results. Zhang et al.
[42] try to use the Shapley Value of Game Theory to unify
these post-hoc passive explanation methods. Moreover, it is
worth mentioning that both vector directions in the parameter
space [19] and the disentangled features or units extracted by
CNN classification task [22], [43] can represent the semantical
directions relevant to the real world, which encourages us
to study how to enhance the explainability of hybrid object
detection Transformer models by disentangling features.

Transformer based models are increasingly dominating
computer vision tasks because of their strong ability to extract
global information by contextualizing every token [44], [45].
However, there are still not many contributions to explain the
reasons for efficiency thoroughly. To some extent, existing
explainable methods mainly focus on finding the tokens that
significantly influence the model results. LRP [46] and partial
LRP [47] compute the layer-wise relevance score propagated
from the output to input units to find the essential tokens.
Rollout method [48] multiplies all the attention scores recur-
sively. But these methods naively assume that attention can
be combined linearly. Chefer et al. [49] combine the attention
relevance score with Grad-Cam to visualize the class-specific
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vital regions. The explanation of vision Transformer models
[45] can directly reshape the class token to the original input
image to find the important pixels because the class token
mixes up all the classification information. As for DETR [3],
we can output the attention related to every decoder query to
visualize the output classification and regression results.

Nevertheless, all of them are simple visual explanations.
They ignore another explanatory dimension: the feature disen-
tanglement property of the hybrid Transformer model. How-
ever, it is difficult to directly match the semantics with the
features due to the feature entanglement property in the object
detection task. Therefore, it is necessary to change the hybrid
object detection Transformer model to be decomposable. This
study actively enhances the explainability of hybrid object
detection Transformer models from the view of feature dis-
entanglement without performance degradation.

III. FEATURE DISENTANGLEMENT ANALYSIS

CNN, MLP, and Transformer are three mainstream architec-
tures in computer vision tasks [50]. All of them can be used
as the feature extractor with different behaviors due to the
divergent mechanism. In this paper, our primary motivation
is that the disentangled feature bases can help explain the
principle of the object detection Transformer. In this section,
we take CNN based Transformer as an example to analyze the
feature disentangling property.

A. End-to-End Object Detection with Transformer

Traditional object detection models, whether one-stage (e.g.,
YOLO [51]) or two-stage (e.g., Faster R-CNN [52]), often
rely on hand-crafted design choices, leading to performance
dependencies on empirical settings [53]. In contrast, DETR,
as a single-backbone model, achieves remarkable performance
[3], [54] without relying on prior knowledge.

CNN and Transformer are fundamental architectures of
DETR. Utilizing the receptive field implemented by convo-
lution, CNN can be seen as a local feature extractor. The
Transformer is a feature mixer because of the long-term
attention mechanism. Specifically, given a batch of images
x ∈ RB×3×H×W , CNN extractor E = e(x) outputs a set
of features F =

{
f l
1, f

l
2, · · · , f l

Cl

}
, where Cl is the channel

number in layer l, feature f l
i is a specific description of the

input images. After these non-linear spatial transformation
operations, we get a mapping function from the RGB image
space to a high-dimensional semantic space spanned by all
feature matrices [19], [55]. The feature set F is sent to
the Transformer encoder as serialized visual tokens, which
are embedded vectors similar to word tokens in NLP [2].
Traditional one-stage object detection CNN models access the
downstream output networks directly [51].

Transformer modules then construct three description ma-
trices Q,K, and V, representing Query, Key, and Value,
respectively, by applying linear layers to the input to-
kens. Subsequently, the self-attention in encoder and cross-
attention in decoder are calculated as Attention(Q,K,V) =

softmax
(

Q·K⊤
√
dk

)
·V with position embedding added to repre-

sent the original positions. After the multi-layer encoders and

Fig. 1: Illustration of DETR and the implemented computa-
tions. CNN module is composed of a ResNet-50 [56] backbone
and a 1 × 1 convolution layer. We extract features from the
position after backbone for computing Sbkb

BFIP and joint before
Transformer for Sjoint

BFIP . The alternative module in the grey
box(F.T) transforms the input format from original point-wise
to feature-wise.

decoders, the outputs of the Transformer are sent to double-
head Fully Connected layers (FC) m(·) to get an object box
set and a classification set as shown in Fig.1. The model can
simultaneously handle regression and classification problems
by jointly training CNN and Transformer. Formally, the model
can be abstracted as

Y = m(t(f(l(e(x))))), (1)

where l(·) is the mapping function from feature matrices F to
visual tokens for matching the input need of Transformer, t(·)
is the Transformer model applied in DETR, and f(·) represents
the function that this paper propose (no operation for DETR),
respectively. By concatenating the flattened feature row vectors
vl
i ∈ R1×dl

, where dl = H l ×W l denotes the dimension of
the feature vector, we get a feature aggregating matrix Fl =[
vl
1; . . . ;v

l
Cl

]
∈ RCl×dl

. There are two types of l(·):
Feature-wise: The first type considers each feature as a

visual token that directly inputs the Transformer. The token
dimension is the length of the flattened feature matrix. Based
on our previous analysis, each feature in this input format
corresponds to a real-world semantic attribute.

Point-wise: l(·) computes the transpose of the feature
matrix F⊤

l ∈ Rdl×Cl

. It considers each feature map point,
which is the mapping embedding of a corresponding pixel
patch, as the visual semantic token. The token dimension is
the channel number.

DETR outputs the predicted results when inputting the
learned tokens and a set of learned queries to the Transformer
decoder. To simultaneously accomplish both object classifica-
tion and coordinate regression tasks, the total loss function of
DETR is formulated as

LDETR =

Ndc∑
i=1

(λclsLi
cls+λboxLi

box+λgiouLi
giou+λcardLi

card),

(2)
where i is the ith layer of Ndc Transformer decoder layers,
Li
cls, Li

box, Li
giou, and Li

card are object classification loss,
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coordinate regression loss, giou loss, and the auxiliary loss,
respectively. λ represents the corresponding coefficient. DETR
finally sums up all losses.

B. Measurement of Feature Disentanglement

In this paper, we reference the framework of human under-
standing a specific complex mathematical and physical prob-
lem by decoupling it into some straightforward and essential
directions. It can be known that CNN realizes the function of
extracting image information to certain features. Transformer
entangles them to the final output. However, Learned features
may contain spurious correlations [26] that can harm the
robustness and decoupling of object detection models. Ana-
lyzing and improving disentanglement, which reduces these
correlations, can unveil the operational mechanisms of object
detection models, ultimately enhancing their interpretability
and trustworthiness.

In this paper, the Batch averaged Feature Inner Product
(BFIP) and Batch averaged Feature Cosine Similarity (BFCS)
based on matrix inner product [14] are utilized as measures of
the degree of disentanglement among features, which can also
be regarded as metrics for feature similarity and orthogonality.
BFIP and BFCS of layer l, denoted by Sl

BFIP and Sl
BFCS ,

are formulated as

Sl
BFIP =

1

B

B−1∑
b=0

Cl−1∑
i=0

Cl−1∑
j=0
j ̸=i

〈
f l
i , f

l
j

〉
, (3)

Sl
BFCS =

1

B

1

Cl(Cl − 1))

B−1∑
b=0

Cl−1∑
i=0

Cl−1∑
j=0
j ̸=i

〈
f l
i , f

l
j

〉
∥f l

i∥2∥f l
j∥2

, (4)

where f l
i ∈ RHl×W l

is the ith feature of layer l, B is the
batch size, H l and W l are the feature dimension, < · > is the
inner product operator, ∥·∥2 is the normalization operator. To
maximize the utilization of GPUs, we upgrade the equations
to tensor inner product formats:

M = Fl · Fl
⊤, (5)

Sl
BFIP =

1

B

(∑
mi,j −

∑
|diag(M)|

)
, (6)

N =
Fl

∥Fl∥2
· Fl

⊤

∥Fl
⊤∥2

, (7)

Sl
BFCS =

1

B

1

Cl(Cl − 1))

(∑
ni,j −

∑
|diag(N)|

)
, (8)

where Fl ∈ RB×Cl×dl

is a feature-wise tensor considering
batch size, Fl

⊤ ∈ RB×dl×Cl

is the transpose of Fl, mi,j , ni,j
are the element of tensor M and N, |diag(M)| is the absolute
value of all pivot diagonal elements of M.

When analyzing DETR’s architecture (Fig. 1), the CNN
handles feature decoupling and extraction, while the Trans-
former entangles features for object detection. The joint
position acts as a bridge connecting these two functions.
Therefore, analyzing decoupling characteristics at this position

(a) backbone (pw) (b) joint (pw)

(c) backbone (fw) (d) joint (fw)

Fig. 2: BFIP analysis of original DETR. All values are max-
normalized, with the largest being 1. (a) and (c) represent the
SBFIP whose feature matrices are tokens from the position
of backbone output (bkb) and (b) and (d) represent that value
of the joint position, respectively. (a) and (b) show SBFIP in
point-wise input format (abbreviated as pw) while (c) and (d)
are in feature-wise (abbreviated as fw) input format.

is crucial. Additionally, features at the backbone’s output
position (abbreviated as bkb) can supplement the analysis of
the decoupling traits of the classification-pretrained backbone
at the joint position.

Firstly, we use Equ. 6 to examine the inner product of
features. Fig. 2 indicates that the feature-wise input format
performs better than the point-wise input format in terms of
feature disentanglement. However, it’s important to note that
we achieve better object detection performance in the point-
wise input format, as shown in Table V. Additionally, prior
research has shown that establishing a correspondence between
decoupled features and semantic attributes is challenging in
unsupervised settings. Hence, this paper follows the practice
of using a point-wise format commonly adopted by discrimi-
native computer vision models.

As shown in Fig.2, the BFIP value of the backbone position
monotonically decreases and converges to a lower limit as
training progresses. In contrast, the BFIP value gradually
increases in the joint position, indicating that features are
becoming more similar and more coupled. It’s worth noting
that there is only one CNN layer (with a kernel size of 1x1)
between the backbone and the joint position. What factors
are responsible for this CNN layer having such a significant
impact that it alters the trend of the BFIP value?

The backbone used in the model is pre-trained on the Im-
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(a) backbone (b) joint

Fig. 3: BFIP analysis of original DETR working on separately
classification (cls) and regression (box) mode. (a) and (b)
represent the SBFIP whose feature matrices are tokens from
the position of backbone output (bkb) and joint, respectively.
All values are max-normalized, with the largest being 1.

ageNet dataset for a classification task and was subsequently
fine-tuned with a small learning rate in our object detection
training schedule. This results in the pre-trained backbone
retaining a strong classification inductive bias that is resistant
to change through fine-tuning. Under such an explanation,
we primarily infer that it is the regression function of object
detection that causes the opposite directions observed in Fig.2.
To be more specific and precise, we successively disable the
regression and classification functions to reveal their own
role in DETR. The BFIP values are acquired accordingly as
shown in Fig.3. When we train only the classification function
(i.e., set λbox, λgiou, and λcard to be 0 in Equ.2, and also
dismiss regression from DETR’s query matching function),
we find that both Sbkb

BFIP and Sjoint
BFIP decreases. Contrary to

this consistency, Sbkb
BFIP and Sjoint

BFIP exhibit opposite trends
at the case of individual training regression function (i.e.,
segregate all settings related to classification). Under these
circumstances, our initial assumption has been validated. It
is the regression function that causes the opposite trend.

To further analyze the impact of classification and regression
on features of backbone and joint position, BFCS (Equ.8) is
utilized to compute the similarity, as shown in Table I. It can be
observed that the degree of disentanglement of the joint posi-
tion is considerably smaller than that of the backbone position.
When only enabling the classification function, we find that
Sbkb
BFCS slumps while Sjoint

BFCS has a slight increase. The same
result is obtained when individually training the regression
function. The entanglement between classification and regres-
sion significantly exacerbates the similarity computed from
the backbone position. This explains why double-backbone
object detection models [25] behave feature activation results
when decoupling classification and regression, whereas single-
backbones do not have this effect.

Comparing Equ.6 with Equ.8, the difference between BFIP
and BFCS lies in the feature norm regularization. Given the
scenario where Sjoint

BFIP increases while Sjoint
BFCS remains nearly

unchanged, we deduce that the absolute values of features,
forced by regression loss, are becoming larger, while those
forced by classification loss remain stable. Considering that
only a limited number of kernels are activated and a small

TABLE I: BFCS and BFSR results on VOC dataset.

Method Loss BFSR Position BFCS

DETR

cls + box 352 bkb 0.68
joint 0.25

cls 306 bkb 0.24
joint 0.26

box 403 bkb 0.48
joint 0.26

DETR + BFSP

cls + box 280 bkb 0.44
joint 0.22

cls 328 bkb 0.16
joint 0.26

box 271 bkb 0.26
joint 0.23

number of features correspond to high-level semantics [19],
[57], features should exhibit characteristics of discreteness and
sparsity. As a consequence, the regression function causes a
small number of features at the joint position to be activated
to a much greater extent than other features, resulting in a
deteriorating imbalance among features. This imbalance makes
the activation area more centralized and reduces the richness of
object semantic information. Therefore, equilibrating the fea-
ture imbalance induced by the regression loss and enhancing
the feature disentanglement is crucial for optimizing DETR
series single-backbone one-stage object detection models.

C. Batch Averaged Feature Spectral Penalization

Mathematically, singular values represent most characteris-
tics of a tensor. Larger singular values have a greater impact on
a tensor when the ratio between them is larger. Batch feature
averaged singular radio (BFSR) can represent the feature
distribution. It is formulated as

SBFSR =

∑B−1
b=0

∑Cl−1
i=0 σ0∑B−1

b=0

∑Cl−1
i=0 σ−1

, (9)

where σ0 and σ−1 represent the largest and smallest singu-
lar value. Table I shows SBFSR of the features from the
joint position. The regression loss significantly increases the
SBFSR, whereas the classification loss decreases it. The larger
the SBFSR is, the more imbalanced the features become.

Literature has shown that forcing the distribution of singular
values to be balanced can achieve the goal of reducing feature
correlation and improving the representation and generaliza-
tion of visual recognition tasks [58], [59]. We analyze the
largest singular value and decompose the extracted feature
tensor based on T-SVD [27], [28], [60]. As shown in Fig.4a,
the largest singular value follows the same trend as the
value of SBFIP shown in Fig. 2b and Fig. 3b. Features
extracted from the input batch are first stacked as a 4-D tensor
FT = [F1,F2, · · · ,FB ] ∈ RB×Cl×Hl×W l

. We then use T-
SVD to decompose the feature tensor:

UΣV⊤ = T -SV D(FT), (10)

where Σ ∈ RB×Cl×Ll×Ll

is the obtained singular values,
Ll is the min value between W l and H l, U and V⊤ are
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(a) DETR (b) DETR + BFSP

Fig. 4: Singular value analysis. All values are max-normalized,
with the largest being 1. (a) represents the largest singu-
lar value decomposed by T-SVD over features of the joint
position(sv0) of the DETR model. (b) represents the value
decomposed from the model with the BFSP loss.

left and right orthogonal tensors whose columns are singular
vectors, respectively. After that, the largest singular values
of Σ are collected to compute the Batch Feature averaged
Spectral Penalization loss (BFSP):

Lbfsp =
1

B

B−1∑
b=0

Cl−1∑
c=0

σ2
b,c, (11)

where σb,c is the largest singular value belonging to the feature
extracted from channel c and image b of batch B.

The BFSP loss is inspired by BSP loss [58] and the
differences are clear. First of all, BFSP is used as a feature
disentanglement and balance intensifier. Our motivation is
to enhance feature disentanglement and balance the feature
distribution for single-backbone object detection models. The
analysis of the feature decoupling properties in classification
and regression has led us to use BFSP to optimize object
detection models. BSP is used in a domain-adaptive classi-
fication scenario. Beyond that, the defined BFSP loss targets
the optimization and decomposition of the set of all features
within a batch. This is in comparison with BSP, which takes a
single feature from the final CNN output layer as input rather
than the middle layer of the neural network. Furthermore, BSP
does not take into account the correlation between features.

After deploying the Lbfsp, the trends of the SBFIP and the
largest singular value have completely shifted downward, as
demonstrated in Fig.5 and 4b. This indicates an enhancement
in disentanglement ability, as depicted in Table I.

IV. APPROACH

After demonstrating the disentanglement property and
proposing the method, we further formally build the Explain-
ability Enhanced object detection Transformer with feature
Disentanglement (DETD) model, as shown in Fig.6.

A. Disentanglement and Reconstruction

In order to take full advantage of the decoupling property
and give a careful but uninjurious dissection of DETD, we

(a) backbone (b) joint

Fig. 5: BFIP analysis of DETD. All values are max-
normalized, with the largest value set to 1. (a) and (b) represent
the BFIP values computed using feature matrices extracted
from the backbone output position and the joint position.

disentangle the features to a set of bases first and reconstruct
them as a kind of optimized tokens.

Disentanglement: Traditional disentangling representation
learning methods mainly extract the decomposed components
by the same number of Networks. But these methods can
hardly guarantee the orthogonality of every base and the in-
tegrity of information [24]. T-SVD is a better method to realize
the decomposition without adding parameters. Concretely, H l

and W l are set to be equal for computing simple and practical.
After computing Equ.(10), we extend the dimension of those
two orthogonal tensors U and V, and a diagonal tensor Σ to
B × Cl ×H l ×H l ×H l. Inner product among them and an
orthogonal identity base is then computed as

B = UΣEbV
⊤, (12)

where Eb ∈ RB×Cl×Hl×Hl×Hl

is a 5-D tensor. It is re-
peatedly constructed B × Cl times by duplicating a cubic
identity tensor whose elements are all zero except the one
in the principal diagonal. B ∈ RB×Cl×Hl×Hl×Hl

represents
the total feature bases. The feature bases decomposed by
every certain feature are orthogonal because of the orthogonal
identity bases Eb. Section V-B also shows that the feature
bases decomposed from different features are orthogonal.

Reconstruction: In this article, we take the reconstruction
method as one optimization strategy of the feature bases.
According to Equ. (10) and (12), we get a set of singular values
from the bth image cth feature Σb,c = {σ1, σ2 . . . , σHl}
with σ1 ≥ σ2 ≥ . . . ≥ σHl and a set of feature bases
Bb,c = {b1, . . . , bHl}. Considering that the bases with larger
singular values have more implications on the total tensor and
the tensor can be reconstructed by summing up different bases
[60], we leverage these properties as rules to optimize the
feature tensor:

Frec = UΣrecV
⊤ =

o∑
i=s

σiuiv
⊤
i =

o∑
i=s

bi, (13)

where ui and vi represent the eigenvectors of U and V, s
and o are two hyperparameters for defining the start and end
positions in the singular value set Σb,c or feature base set



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

Fig. 6: Illustration of DETD Model. All modules in the color orange are DETR modules; in the color green are the modified
DETD parts. A 1 × 1 convolution layer is added to the extractor module to adjust the input dimension. T-SVD decomposes
feature tensor. The produced feature bases are shown in sequence according to the order of eigenvalues. The singular values
for computing LBFSP are taken from the T-SVD module.

Bb,c. This method is used without adding further complex
computation since we have already decomposed the features
for computing BFSP.

B. Model with Disentanglement

Concretely, a given image in random size is firstly resized to
square 640× 640 (will be discussed in section V-C). We then
extract a set of backbone features in size of 2048 × 20 × 20
after the 32 times shrunk. A convolution layer with kernel size
one is utilized to adjust the channel number of the features
to 256. Similar to literature [59], we add 1e-3 to the feature
matrix to enhance the stability of feature decomposition. T-
SVD module is applied on the feature tensor taken from the
joint position to get the disentangled feature bases B. The
singular values are used for computing BFSP loss to realize
the disentanglement goal. After the reconstruction module
Equ. (13), the generated features Frec carry varying levels
of information derived from the original features according to
the configuration of hyperparameter s and o. Finally, the total
loss of DETD can be formulated as

LDETD = LDETR + λBFSPLBFSP , (14)

where λBFSP is the corresponding coefficient.

C. DETD Model Variants

In order to give more convincing proof to show that our
feature disentanglement method is indeed efficient no matter
in what kinds of single-backbone object detection Transformer
architectures, we extend our method to five variants: CNN

backbone based, ViT backbone based, MLP backbone based,
Deformable DETR based, and DINO based, respectively. The
last two variants are abbreviated as DFDETD and DIDETD. In
addition, we also deploy the proposed method on the Borderdet
model (abbreviated as BDDETD) to validate our method’s
performance on the traditional pure CNN single-backbone
one-stage object detection model.

ViT Based Transformer: Vision Transformer (ViT) [45] is
one of the most popular Transformer frameworks in computer
vision. It achieved SOTA performance in the classification
task. It has been pre-trained on the ImageNet dataset in the
conditions of patch size set to 16, embedding dimension set to
384, and the pre-training image size set to 224. We adopt the
pre-trained ViT offered by timm python package. However, the
difference from conventional ViT approaches lies in that we
delete the class token of the ViT output to make the dimension
in tune with that of the mixer. Regarding the bridge between
the ViT extractor and DETD mixer, the output of the final ViT
block is reshaped to a feature tensor by two CNN layers. The
first CNN layer, whose kernel size is three, mainly adjusts the
feature size to 20 × 20 to reduce the computing complexity
of T-SVD. By the way, we can also apply other parameterless
modules to replace this CNN layer to build a pure Transformer
based DETD, such as Global Average Pooling (GAP), with just
a slight performance perturbation. The latter CNN is the same
as the treatment of the ResNet backbone discussed above.
Actually, the convolution layer with kernel size one can be
seen as a linear transformation layer.

MLP based Transformer: MLP is the most classical
architecture of deep learning. Referencing the framework of
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Transformer, MLP-mixer [50] makes the MLP architecture get
back to the peak in classification tasks. However, We have
to choose AS-MLP version [61] as the MLP based feature
extractor rather than that famous noumenon because it can not
adaptively adjust the input image size to meet the hybrid object
detection Transformer’s requirement. AS-MLP is an evolution
version that is able to capture the local dependencies and be
applied to the downstream object detection tasks by axially
shifting channels of the feature map. It is also pre-trained on
the ImageNet dataset in the conditions of patch size set to 4,
embedding dimension set to 96, shifting size set to 5, and the
pre-training image size set to 224.

Deformable DETR and DINO Variants: In this part, we
mainly want to show that our method can be efficiently applied
to other end-to-end hybrid Transformer object detectors. De-
formable DETR [4] and DINO [62] are two advanced versions
of DETR. They significantly upgrade the architecture of DETR
and drastically reduce the training time by extracting multi-
scare feature maps. In this study, we conduct experiments on
them with the model configuration of L = 3. It extracts the
output feature maps of the last two stages. The third feature
map, the lowest resolution, is obtained via a 3 × 3 stride 2
convolution on the final ResNet stage. Accordingly, we add
three CNN layers to parallelly adjust the feature size and the
dimension to match the Transformer. We sum up the bases
proportionally because of their multi-scale approach.

CNN based detection model Borderdet: Borderdet model
[63] is a classic in the realm of CNN based object detection
models. What sets it apart from the previous models is
that we didn’t add extra convolutional layers. Instead, we
directly apply the BFSP and optimization strategies between
the feature extractor and object detector.

V. EXPERIMENTS

We train and evaluate the DETD models on two object
detection datasets. The code of DETD will be public at
https://github.com/YuWLong666/DETD.

A. Experiment Setup

We employ PASCAL VOC 2007 + 2012 training and
validation splits for training and test 2007 split for evaluation,
which results in about 15K and 5k images, respectively [64]. It
contains 20 classes of images and bounding box annotations.
We also perform experiments on MS COCO 2017 [65] dataset
containing 118k training images and 5k validation images
in 80 classes. The performance metrics include mAP, AP50,
AP75, and other integral metrics over multiple thresholds.

We follow DETR [3] to set the basic training parameters of
DETD. DFDETD, DIDETD, and BDDETD are follow their
counterparts, which means we do not adjust the parameters
harshly but get a more excellent result. We train and evaluate
on 2080Ti GPUs with the batch size set to 4 (2 for ResNet-152,
ViT-Base, and ASMLP-Base backbones) for VOC dataset. As
for COCO dataset, we use 3090 GPUs with the batch size
set to 4. The length of the DETD Transformer decoder query
is set to 25 when trained on VOC dataset and is changed to
100 when it turns to COCO due to the increase of categories.

It is set to 75 when used to train DFDETD on VOC dataset
since that number in traditional Deformable DETR is three
times that of DETR. It is set to 400 when training DIDETD
on VOC dataset and 600 for COCO.

According to Equ.(10), Equ. (13), and Fig.6, we decompose
the original features to feature bases and optimize them by
summing up the first o bases. Based on this paradigm, four
types of DETD models have been trained and evaluated. An
initial DETD model with both BFSP loss and reconstruction
procedure is established to realize the whole idea. It is trained
from scratch for 250 epochs. After that, a DETR model is
trained for 200 epochs to achieve a pre-trained checkpoint in
no BFSP and no T-SVD mode. We then use this checkpoint to
fine-tune the DETD model with BFSP loss and reconstruction.
We drop the final two-branch FC networks and the mapping
layers between the extractor and Transformer to retrain them
in the fine-tuning process. This cross-trained DETD model
(abbreviated as DETD-cross) is trained for 150 epochs to
ensure the training converges. The learning rate schedule
maintains 0.0001 for the first 90 epochs and drops by ten times
afterward. Finally, DETD without BFSP and DETD-cross
without BFSP are trained in the same setting to evaluate the
optimization step. All these DETD models and DETR baseline
derive their branches that are constructed by CNN, MLP,
Transformer, Deformable, DINO, and Borderdet respectively.
λBFSP is set to 0.001 when using BFSP loss.

B. Feature Disentanglement Results

Equ.(12) has shown that the bases decoupled from a specific
feature are orthogonal. We further compute the BFIP value
among all feature bases. Fig.7a, 7c, and 7e show the BFIP
values of DETDs whose feature extractor are ResNet-50, ViT-
Small, and ASMLP-Tiny, respectively. When considering the
BFCS values, shown in Table II, it becomes apparent that
Transformer and MLP-based object detection models outper-
form the CNN-based model from the perspective of feature
disentanglement. What needs to be emphasized is that we do
not force features produced by DNN to be strictly orthogonal.
Feature disentanglement reduces redundant correlations, en-
hancing the possibility of achieving semantic decoupling and
alignment. The proposed DETD models with BFSP loss can
improve the orthogonality of all feature bases as they converge
to smaller values approaching zero during the training process.

As shown in Fig.7b, 7d, and 7f, the BFSP loss reduces
the largest singular value by order of magnitude, with the
ratio between larger and smaller also decreasing. To intuitively
visualize the feature distribution, we compile statistics on
the features extracted from the joint position, as shown in
Fig.8. Specifically, we use Global Average Pooling (GAP) to
compute the activation value of every feature. Subsequently, a
histogram is created to represent the activation degree of each
feature. It can be observed that most features are in a state of
inhibition, indicating that an equal number of CNN kernels are
suppressed. The BFSP loss has a significant positive impact on
the similarity of the regression function due to the balancing
effect among features, as shown in Fig. 8b. It is noteworthy
that the BFSP loss encourages more CNN kernels to activate
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TABLE II: Results of object detection performance(AP, %) of different DETR and DETD models on VOC dataset. BFCS
represents the BFCS value of the joint position. The item of Epochs records the number of total training epochs. The GPU
Hours are tested on these conditions: single 2080Ti GPU, batch size 1, and epoch 1. Fix means the model takes fix-sized 640
× 640 images as input. 256 and 400 represent the Transformer’s embedding dimension. T, S, and B represent Tiny, Small,
and Base versions of the according backbones, respectively.

Extractors Models mAP AP50 AP75 BFCS Epochs Pretrain Params GPU
Epochs Hours

CNN

ResNet-50

DETR [5] 54.10 78.00 58.30 – – – 41.3M 1.06
DETR (Fix 256) 53.76 77.52 57.69 0.25 250 – 41.9M 1.12
DETR (Fix 400) 54.17 77.67 58.19 0.25 250 – 55.5M 1.00
DETR (Fix 400) 54.26 77.72 58.29 0.27 350 – 55.5M 1.00
DETR (+ BFSP) 53.28 78.04 57.03 0.22 250 – 41.9M 1.03
DETD 53.65 77.70 57.62 0.22 250 – 41.9M 1.03
DETD (w/o BFSP) 54.35 77.92 58.12 0.25 250 – 41.9M 1.05
DETD-cross 54.67 77.72 58.62 0.22 150 200 41.9M 1.03
DETD-cross (w/o BFSP) 55.14 78.05 59.22 0.23 150 200 41.9M 1.05

ResNet-101

DETR 54.60 78.49 58.42 0.25 250 – 60.2M 1.58
DETD 54.76 78.68 59.57 0.15 250 – 60.2M 1.61
DETD (w/o BFSP) 54.73 78.67 59.09 0.32 250 – 60.2M 1.60
DETD-cross 55.51 78.95 60.43 0.22 150 200 60.2M 1.61
DETD-cross (w/o BFSP) 55.66 78.75 60.51 0.23 150 200 60.2M 1.60

ResNet-152

DETR 56.14 79.79 60.79 0.26 250 – 75.8M 1.70
DETD 56.14 80.00 60.32 0.25 250 – 75.8M 1.73
DETD (w/o BFSP) 56.04 79.72 60.91 0.26 250 – 75.8M 1.72
DETD-cross 56.59 79.65 60.91 0.25 150 200 75.8M 1.73
DETD-cross (w/o BFSP) 56.69 79.72 61.47 0.26 150 200 75.8M 1.72

Transformer

ViT-S

DETR 54.30 79.16 57.30 0.38 250 – 41.6M 1.12
DETD 55.22 79.11 58.88 0.19 250 – 41.7M 1.20
DETD (w/o BFSP) 54.85 79.49 58.18 0.28 250 – 41.7M 1.16
DETD-cross 55.27 78.30 58.94 0.30 150 200 41.7M 1.20
DETD-cross (w/o BFSP) 55.34 78.67 59.36 0.40 150 200 41.7M 1.16

ViT-B

DETR 56.87 80.10 61.18 0.34 250 – 108.1M 2.26
DETD 56.93 79.96 60.52 0.29 250 – 108.1M 2.30
DETD (w/o BFSP) 57.23 80.74 61.60 0.31 250 – 108.1M 2.29
DETD-cross 57.05 79.53 60.76 0.30 150 200 108.1M 2.30
DETD-cross (w/o BFSP) 57.45 79.25 61.61 0.34 150 200 108.1M 2.29

MLP

ASMLP-T

DETR 58.96 81.79 63.20 0.23 250 – 45.2M 1.42
DETD 59.07 82.25 63.73 0.14 250 – 45.2M 1.40
DETD (w/o BFSP) 59.19 82.82 63.37 0.22 250 – 45.2M 1.37
DETD-cross 59.49 81.74 64.03 0.14 150 200 45.2M 1.40
DETD-cross (w/o BFSP) 60.10 82.40 65.15 0.23 150 200 45.2M 1.37

ASMLP-S

DETR 59.99 82.98 65.20 0.26 250 – 66.5M 1.88
DETD 60.49 83.32 65.81 0.24 250 – 66.5M 1.91
DETD (w/o BFSP) 60.07 83.17 65.62 0.25 250 – 66.5M 1.90
DETD-cross 60.94 83.51 66.60 0.24 150 200 66.5M 1.91
DETD-cross (w/o BFSP) 60.65 83.14 66.22 0.25 150 200 66.5M 1.91

ASMLP-B

DETR 61.44 83.81 66.77 0.34 250 – 104.5M 2.51
DETD 61.26 83.28 66.92 0.31 250 – 104.5M 2.55
DETD (w/o BFSP) 61.84 83.75 67.49 0.31 250 – 104.5M 2.54
DETD-cross 62.57 83.88 67.87 0.31 150 200 104.5M 2.55
DETD-cross (w/o BFSP) 62.28 83.67 68.03 0.32 150 200 104.5M 2.54

and play essential roles in the entire model. As more features
are activated, the similarity between features decreases. The
BFSP loss effectively compels different features to pay more
detailed attention to the task.

C. Optimization Strategies Analysis

Deep learning model training involves learning correlations
between data [26], while BFSP has the opposite effect. There-
fore, intuitively, BFSP potentially reduces object detection
performance. We conduct an experiment where only BFSP
is deployed without any optimization measures, as shown in

Fig. 9. It can be observed that the introduction of BFSP
leads to a performance decrease. As the BFSP coefficient
increases, this phenomenon becomes more pronounced. We
explain this performance degradation as being caused by the
early introduction of BFSP into the model training. The BFSP
loss maintains the same strength throughout the entire training.
The learned features are strongly decoupled, but the learning
of indispensable correlations is insufficient.

The optimization strategies in this paper mainly consist of
two parts. The first is the reconstruction process after T-SVD
decomposition based on Equ.13. Considering that the tensor
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(a) CNN (b) CNN singular value

(c) Trans BFIP (d) Trans singular value

(e) MLP (f) MLP singular value

Fig. 7: Feature Disentanglement analysis. We compute the
BFIP values of DETD and DETD without BFSP loss, as shown
in (a), (c), and(e). (b), (d), and (f) show the singular values of
different models. BFIP values are max-normalized, with the
largest being 1. Different rows represent CNN, Transformer,
and MLP based hybrid models, respectively.

(a) DETR (b) DETD

Fig. 8: Histograms of features in the joint position. Values are
max-normalized, with the largest being 1.

can be reconstructed by summing up different bases [60]. we
leverage these properties as rules to boost the object detection
task. This technique can implicitly mitigate the impact of the
BFSP loss, thereby improving object detection performance.
For example, we only utilize the first 8 bases (i.e., o=8),
effectively setting the singular values of the remaining 12 bases

Fig. 9: BFSP coefficient analysis on VOC dataset. The evalu-
ated model is ResNet-50 DETR.

Fig. 10: The mAP values(AP, %) of different DETD models
and different bases. We reconstruct features by Equ. (13) with
setting s = 0. The x-axis represents the o value.

to zero, thereby increasing the ratio of large feature values.
We conduct experiments regarding the number of feature

bases extracted, as shown in Fig.10. It shows that the per-
formance grows to a convergence point as the number o
increases. As for different feature extractors, we achieve better
performance when o is set to 40% to 70% of all feature bases.
Experimental results, Table II, confirm that this approach can
indeed enhance model performance. Furthermore, as depicted
in the figures, the introduction of BFSP loss makes the
distribution of feature bases more uniform. The uniformity of
DETD surpasses that of models without BFSP.

The second part is the explicit training schedule of BFSP
loss. DETD-cross and DETD(w/o BFSP)-cross models adopt
a stepwise paradigm for setting the coefficient of BFSP
λBFSP , starting with an initial value of 0 and transitioning
to 0.001 after a certain number of epochs. This method is
essentially a trade-off between decoupling and object detection
performance. From Table II, the maximum decoupling occurs
when BFSP loss is introduced at the beginning of training (i.e.,
DETD), which reduces model performance. Introducing BFSP
in the later stages of training (i.e., DETD-cross) can enhance
decoupling characteristics while improving performance.

In this paper, we primarily adopt a fixed size of 640 as the
model’s input. Firstly, Original DETR uses randomly sized
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TABLE III: Object detection performance(AP, %) of DINO models in various input formats. The GPU Hours are acquired in
these conditions: single 3090 GPU, batch size 1, epoch 1. The evaluated dataset is COCO.

Input Type mAP AP50 AP75 APS APM APL DIDETD GPU Hours

DINO (Fix 640) 40.18 59.23 42.42 18.33 44.22 61.09 8.16
DINO (Fix 768) 42.45 61.68 45.31 20.68 46.54 61.98 8.56
DINO (Fix 1024) 44.98 64.02 48.33 24.50 49.43 62.20 8.79
DINO (Fix 1280) 46.15 64.76 49.66 27.50 50.30 61.83 25.43
DINO (Original) 44.57 63.87 47.48 24.56 49.14 61.55 18.22

TABLE IV: Object detection performance(AP, %) results of DINO and Deformable models on VOC dataset.

Methods Input Type Models mAP AP50 AP75 Epochs Pretrain
Epochs

Deformable Square 640

DFDETR (Fix 640) 56.22 80.52 61.62 60 –
DFDETD 56.43 80.59 61.81 60 –
DFDETD (w/o BFSP) 56.61 80.79 62.41 60 –
DFDETD-cross 56.60 79.98 61.40 40 20
DFDETD-cross (w/o BFSP) 56.58 79.78 61.75 40 20

DINO

Square 640

DINO (Fix 640) 62.23 82.39 67.31 15 –
DIDETD 62.21 82.32 67.68 15 –
DIDETD (w/o BFSP) 62.34 82.47 67.65 15 –
DIDETD -cross 62.67 82.85 68.04 10 10
DIDETD -cross (w/o BFSP) 62.55 82.80 68.03 10 10

Original

DINO (Original) 63.34 82.88 69.19 15 –
DIDETD 63.33 82.69 69.12 15 –
DIDETD (w/o BFSP) 63.64 82.92 69.36 15 –
DIDETD -cross 64.23 83.29 70.35 10 10
DIDETD -cross (w/o BFSP) 64.21 83.47 70.31 10 10

image matrices, with a maximum input length of 1333, as
input. This significantly reduces the speed of GPU SVD
decomposition. In such a predicament, a small fixed input size
is a good option to choose. Secondly, as shown in Table II,
when using a fixed square input size of 640, DETR achieves
the same performance as with random inputs on VOC dataset.

We also conduct experiments on the COCO dataset using
the DINO model [62] to evaluate whether the input type
influences performance, especially for small objects. As shown
in Table III, when the input size reaches 1280, the GPU
decomposition speed significantly decreases, adding 16.7 GPU
hours compared to an input size of 1024, and even slower
than the original random inputs. As long as the input does not
exceed 1024, the time taken for GPU SVD decomposition can
be negligible. Random inputs are also nearly 10 GPU hours
slower than fixed 1024 inputs. Small objects (i.e., APS) also
increase as the model’s input size becomes bigger. The impact
of fixed input size on small objects is greater than the impact
on other sizes. It provides an advantage for larger objects (i.e.,
APL). We find that when using a fixed 1024 input, the model’s
performance is the same as with the original random inputs
regardless of object size. When the input is fixed at 1280, the
model even outperforms the original random inputs by 1.58%
in terms of mAP and 2.94% in terms of APS.

D. Object Detection Performance

Experiments on VOC dataset: Our method is applied
to three mainstream backbone-based models, including CNN
based (i.e., ResNet-50, 101, and 152), Transformer based
(i.e., ViT-Small and Base), and MLP based (i.e., ASMLP-

Tiny, Small, and Base) models. The model size has reached a
maximum of 108M parameters. We obtain the expected results
across all DETD models, as shown in Table II.

DETD models achieve comparable object detection perfor-
mance to DETR, while the similarity metric BFCS outper-
forms DETR. All DETD (w/o BFSP) models, DETD-cross
models, and DETD-cross(w/o BFSP) models perform better
object detection performance than their baselines. DETD-
cross(w/o BFSP) models are the best, surpassing their base-
lines by an average of 1% in terms of mAP. This is mainly at-
tributed to the optimization strategies we specifically proposed.
Taking ResNet-50 DETD as an example, the AP performance
drops by about 0.5% when BFSP loss is enabled (i.e., 53.28%).
However, the performance increases to 54.67% when both
optimization metrics are utilized. At these points, the BFCS
value remains at its lowest (i.e., 0.22). When only the two
optimization strategies are used without introducing the BFSP
loss (i.e., DETD (w/o BFSP) and DETD-cross (w/o BFSP)),
the model’s detection performance reaches its peak, surpassing
baseline by 1%. In addition, the convergence epochs of cross-
trained DETDs are also significantly reduced thanks to the
pre-training process. As for different extractors, we get the
same conclusion. ASMLP based models achieve the highest
performance, demonstrating the superiority of its framework
(62.28%).

When comparing feature similarity (i.e., BFCS in Table II),
across all types of backbones, the proposed method indeed
enhances the model’s decoupling ability. ASMLP-T based
DETD achieves the lowest feature similarity 0.14 with the help
of BFSP loss. Additionally, we find that as the depth of the
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TABLE V: Results of Object Detection(AP, %) in feature-wise
input format.

Method mAP AP50 AP75

DETR (feature-wise) 42.71 69.05 44.71
DETR (feature-wise + reconstruction) 43.04 68.44 44.69

TABLE VI: Object detection performance(AP, %) and BFCS
of Borderdet models on VOC dataset. The pretrain epochs for
BDDETD-c and BDDETD-c(w/o BFSP) is 16000 iterations.

Models mAP AP50 AP75 BFCS

Borderdet 56.28 79.31 61.82 0.22
BDDETD 56.29 78.85 60.86 0.14
BDDETD (w/o BFSP) 57.71 80.39 62.52 0.21
BDDETD-c 56.32 79.47 61.36 0.20
BDDETD-c (w/o BFSP) 57.32 80.07 62.33 0.21

model backbone increases, all three major frameworks show
the characteristic of increasing feature similarity. We infer
that, as the model’s learning and representation capabilities
improve, the model’s fitting ability to the same dataset also
increases, leading to a stronger inductive bias that can hardly
be affected by BFSP loss.

As shown in Table IV, DFDETD and DIDETD preserve
their original excellent characteristics in terms of performance
and speed. The performance of DIDETD in its original input
format also surpasses that of the square 640 format. DINO
achieves the best performance, reaching 64.23%. Similarly,
all DETD models show improvements compared with their
baselines. The largest improvement occurs when the input
mode is random size input, with an increase of 0.89%.

The results conducted in the condition of feature-wise input
format are shown in Table V. It severely degrades the object
detection performance by up to 10% in terms of mAP. This
can be explained by Fig. 11.

To further substantiate the model’s generalization capabili-
ties, we initially conduct an evaluation on a CNN based single-
backbone object detection model, Borderdet [63]. The results
are shown in Table VI. We find that the model’s performance
improves, with the maximum increase being 1.04% in terms of
mAP. The feature similarity decreases by 36% when the BFSP
loss is taken into account. This is encouraging and suggests
that our method is applicable to this class of models.

Experiments on COCO dataset: We also conduct experi-
ments on another extensive dataset, COCO, as shown in Table
VII. We reach the same conclusion as on the VOC dataset.

When evaluating DINO on the COCO dataset using three
different input formats, as shown in Table VIII, the results
are consistent with the experiments on the VOC dataset. The
largest improvement occurs when the input mode is random
size input, with an increase of up to 0.9% in terms of AP.

These results demonstrate the effectiveness and the general-
ization ability of our method at both model and dataset levels.

E. Other Penalty Variants

BFCS and BFIP are employed in this paper to quantify
the decoupling properties between features and can also be

TABLE VII: Results of object detection(AP, %) on COCO
dataset. The letter c is the abbreviation of cross.

Method mAP AP50 AP75 APS APM APL

DETR 35.48 55.39 36.74 12.91 38.20 58.30
DETD 34.82 54.98 35.83 11.58 37.32 57.32
DETD (w/o BFSP) 36.19 56.18 37.51 13.50 38.67 58.81
DETD-c 35.93 55.55 37.57 13.18 38.68 58.08
DETD-c(w/o BFSP) 36.58 56.80 38.24 14.47 39.51 59.15

independently utilized as penalties. We conduct experiments
by solely adding a penalty of BFCS or BFIP. The total loss
functions of these two DETD variants are

LDETD−BFCS = LDETR + λBFCSSBFCS , (15)

LDETD−BFIP = LDETR + λBFIPSBFIP , (16)

where λBFCS and λBFIP are the corresponding coefficients.
As illustrated in Fig. 12, from the perspective of object
detection performance, the optimal results for both variants
(i.e., 52.97% and 53.26%) are lower than DETD (53.65%).
Both approaches show effectiveness in inducing feature dis-
entanglement, with the BFCS penalty being the most optimal.
When applying the same optimization strategy to both variants
(i.e., the cross-operation on DETD-BFCS and DETD-BFIP
variants with their according loss coefficients set to the best),
their performance (52.92% and 53.22%) is lower than the
baseline DETR (54.17%). Our method DETD-cross outper-
forms both variants by 1.4%. Therefore, we pursue feature
disentanglement by penalizing the feature singular values (i.e.,
BFSP loss in this paper).

F. Generalization Performance

We use clipart dataset [66] to verify generalization per-
formance in a domain generalization setting. Clipart is a
commonly used dataset for validating model generalization
[24]. It shares the same image categories and evaluation
standards as VOC dataset. Experimental results, shown in
Table IX, indicate that BFSP loss can indeed improve the
generalization of DETR, with an improvement of 2.2%. When
the influence of BFSP is weakened (i.e., DETD-cross), gener-
alization performance also decreases. However, it still remains
1.1% higher than DETR. Additionally, we must recognize an
issue that, while BFSP can enhance generalization, the DETR
framework itself still lacks sufficient generalizability.

G. Feature Activation Visualization

Grad-Cam [41] visualization is conducted to intuitively
demonstrate the effectiveness of our method. The visualiza-
tions are shown in the Fig. 11. In the regression visualization
(i.e., the bottom row), compared to DETR, DETD’s feature
activation maps provide a more detailed depiction of the
object’s boundaries, enhancing the model’s saliency detection
capabilities and aiding in more accurate determination of
the object coordinates. This also confirms that our method
activates more features. Each feature represents a semantic
pixel patch when the input format is point-wise. More feature
activations enhance the model’s semantic learning capabilities,
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TABLE VIII: Object detection performance(AP, %) results of DINO and DIDETD models on COCO dataset.

Input Type Models mAP AP50 AP75 APS APM APL Epochs Pretrain
Epochs

Square 640

DINO 40.18 59.23 42.42 18.33 44.22 61.09 15 –
DIDETD 41.12 60.01 43.58 18.41 44.89 62.51 15 –
DIDETD (w/o BFSP) 41.05 60.09 43.56 18.40 45.20 61.82 15 –
DIDETD-cross 40.44 59.56 42.70 18.70 44.43 61.58 10 10
DIDETD-cross (w/o BFSP) 40.38 59.35 42.77 18.37 44.61 60.91 10 10

Square 1024

DINO 44.98 64.02 48.33 24.50 49.43 62.20 15 –
DIDETD 45.01 63.82 48.34 24.24 49.34 61.87 15 –
DIDETD (w/o BFSP) 44.81 63.85 47.93 24.12 49.14 62.34 15 –
DIDETD-cross 45.42 64.34 48.89 24.91 49.45 63.82 10 10
DIDETD-cross (w/o BFSP) 45.34 64.38 48.60 24.81 49.38 63.59 10 10

Original

DINO 44.57 63.87 47.48 24.56 49.14 61.55 15 –
DIDETD 44.07 63.09 47.25 24.23 48.72 61.42 15 –
DIDETD (w/o BFSP) 44.46 63.46 47.72 24.68 48.83 62.02 15 –
DIDETD-cross 45.21 64.57 48.52 24.52 49.77 63.13 10 10
DIDETD-cross (w/o BFSP) 45.47 64.76 48.85 25.30 49.85 63.40 10 10

DETR DETD DETD (w/o BFSP)) DETR (fw)

Fig. 11: Grad-Cam analysis of classification and regression functions. The top row is the activation of classification. The bottom
row is the activation of regression.

TABLE IX: Generalization results(AP, %). The source domain
is VOC dataset. The target domain is Clipart dataset.

Models mAP AP50 AP75

DETR 13.15 22.08 13.14
DETD 15.35 24.11 16.34
DETD (w/o BFSP) 14.18 23.26 14.89
DETD-cross 14.24 23.99 14.59
DETD-cross (w/o BFSP) 13.78 22.52 15.10

aligning more closely with human prior knowledge, thereby
enhancing explainability.

In an image, a single object often contains multiple semantic
pieces of information. For instance, the head of a cat can
correspond to one semantic piece of information, while the tail
of the cat may correspond to another. When using a single-
backbone DETR, coupled features tend to activate in con-
centrated regions, making it challenging to demonstrate their
correspondence with semantic information related to objects,

(a) Performance (b) BFCS value

Fig. 12: The results of the model with only the addition of
BFCS and BFIP loss. The X-axis represents the coefficients
of the added loss functions. BFCS represents the BFCS value
of the joint position.

thus reducing interpretability. The proposed method enhances
the interpretability of features by producing decoupled features
that correspond to activations in more locations associated
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Fig. 13: Feature bases of the DETD model. Feature bases are
sorted according to the eigenvalues.

TABLE X: Object detection performance(AP, %) and BFCS
value of DETD-cross models trained on various epochs. The
learning rate drop operation for each model occurs within the
last 20 epochs before training completion.

Total
Epochs

Pretrain
mAP AP50 AP75 BFCSEpochs Epochs

270 150 120 54.54 77.83 58.83 0.22
310 150 160 54.67 77.54 58.44 0.22
330 150 180 54.57 77.07 58.85 0.22

250 150 100 53.97 77.21 57.91 0.22
250 130 120 54.62 77.32 59.13 0.22
250 100 150 54.44 77.38 59.15 0.22
250 50 200 54.50 77.59 58.44 0.22

290 90 200 54.62 77.67 58.45 0.22
330 130 200 54.72 77.50 59.09 0.22
350 150 200 54.67 77.68 58.62 0.22

with more semantic information. This results in a richer set of
semantic information input to the transformer, which, in turn,
is conducive to improving object detection performance.

Besides, visualizations also explain that DETR in feature-
wise input manner behaves with lower performance due to
classification and regression being coupled. This is because
this approach fundamentally doesn’t treat each pixel patch
as a semantic attribute object. Regarding the feature bases
shown in Fig.13, we can see that the largest singular value
dominates the original feature map. Additionally, we have
observed that the smaller singular values tend to focus more
on global information, potentially leading to a degradation in
performance.

H. Training Epochs Analysis

We conduct experiments to validate the impact of training
epochs on object detection performance and BFCS value.
Table X presents the object detection performance and BFCS
value of the DETD-cross model under various settings of pre-
trained epochs and fine-tuned epochs. We first control that the
total number of pre-trained and fine-tuned epochs amounts

to 250. The optimal performance (54.62%) occurs when the
number of pre-trained epochs and fine-tuned epochs is 120 and
130 (abbreviated as 120-130). This is 0.05% lower compared
to the 200-150 setting (54.67%). The BFCS value for all
DETD-cross configurations is 0.22, confirming the efficacy of
the optimization strategy proposed in this paper (i.e., cross)
in enhancing object detection performance while maintaining
feature disentanglement effects. When the pre-trained epochs
and fine-tuned epochs are insufficient, both models experience
a decrease in performance, yet still surpass the DETD model.
When controlling the pre-trained epochs at 200 varying the
number of fine-tuned epochs, and controlling the number of
fine-tuned epochs and varying the pre-trained epochs, the
model demonstrates similar outcomes. Even with 130 fine-
tuned epochs, the model’s performance surpasses that of the
200-150 configuration by 0.05%. Therefore, we configure 200-
150 as our experimental configuration to ensure robust pre-
trained and fine-tuned model convergence.

VI. CONCLUSION

In this paper, we explore and reveal the intrinsic disentan-
glement characteristics of the single-backbone object detection
models. The defined BFIP and BFCS values demonstrate that
features between the extractor and Transformer have the dis-
entanglement property by adding the progressive BFSP loss.
The relation between classification and regression grows closer
from this aspect. Based on the decomposition method T-SVD
and the optimization methods, we build a series of explain-
ability enhanced DETD models based on CNN, Transformer,
MLP, Deformable DETR, DINO, and Borderdet, respectively.
Experiments demonstrate that our rule-inspired feature disen-
tanglement method not only reduces feature similarity but also
leads to improvements in generalization and object detection
performance when applied in conjunction with optimization
strategies. Furthermore, it improves explainability. There are
several problems worthy of future work. First, introduce more
optimization methods, such as stable and efficient tensor
decomposition methods, to further improve the performance
and training efficiency of the model. Second, since feature
disentanglement aims to enhance semantical explainability, the
correspondence between feature directions and semantics of
the real world needs to be clarified, especially for introducing
human knowledge. Third, there are still many disentanglement
properties that need to be discovered since the BFSP loss
changes the singular value distribution of the feature tensor,
and it may influence other characteristics of DNNs.
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