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Abstract—Multi-modal learning is currently a research hotspot
in the field of artificial intelligence. Multi-modal learning effec-
tively improves learning performance since it comprehensively
utilizes information from multiple modalities. However, in real-
world application scenarios, it is often impossible to collect
complete multi-modal data, which limits the wide application of
multi-modal learning. High-quality missing modality synthesis is
still a challenge. In this work, we propose a novel method to syn-
thesize the missing modality. Specifically, we utilize the common
latent representation space model to adaptively fuse the consistent
and complementary information in existing modalities, and then
the synthesis network with 1d-CNN layers and MLP is employed
to synthesize the missing modality. In addition, “threshold-loss”
is proposed to tackle the over-optimizing phenomenon during
the testing stage. Experiments demonstrate the proposed method
outperforms other existing methods.

Index Terms—multi-modal, latent space, synthesis, missing
modality, latent representation, multi-modal learning

I. INTRODUCTION

In the era of big data, the ways of data collection are
simple and diverse, multi-modality data can be easily acquired.
Multi-modality data refers to the data collected from different
perspectives of the same datum point, these data can provide
complementary information about the datum point [1], multi-
modality data can be widely obtained in various fields. For
example, data from web pages contains various modal data
including image, text, audio, etc.; in the medical field, Com-
puted Tomography (CT), Magnetic Resonance Imaging (MRI),
and Positron Emission Tomography (PET) are commonly used
multi-modality data in brain diseases diagnosis and treatment;
remote sensing technology can obtain a variety of different
modal data, including RGB images, Lidar, and multi-spectral
data [2]. Based on the demand to make full use of multi-
modality data, multi-modal learning has become a hotspot of
research.

Using these data from multiple perspectives correctly and
reasonably can significantly improve learning performance.

Researchers have made efforts to fully tap the potential of
multi-modality data in multiple fields. Literature [3] proposed
a multi-modal medical image fusion method in the spatial do-
main. Firstly, a moving frame-based decomposition framework
is adopted to decompose source images to texture components
and approximation components, and then a novel weight map
refined strategy based on image properties and guide filtering
is implemented to produce the final map which is applied
to fuse the approximation components; Liao et al. proposed
Multi-Seq2Seq-Att for hotspot traffic speed prediction in [4],
it’s a multi-modal sequence learning model that deals with two
sequences in different modalities, the main idea is learning to
fuse the multi-modal sequence with content attention which
helps to address the modality gap. Cui et al. [5] introduced
the phase congruency model with illumination and contrast
invariance for image matching, achieving a more robust effect
on the task of automatic matching of multi-modal remote
sensing images. In [6], a novel Multi-Modal Distance Metric
Learning (MD2ML) method is proposed, which learns a data-
dependent similarity metric from multi-modal media data,
aiming at assisting the brands to retrieve appropriate media
data from social networks for potential customer discovery.
Yang et al. [7] propose a method using multi-modal graph
edge variational autoencoders to learn the latent distribution of
multiple relations underlying each user link. It can be seen that
due to the ability to fully explore the potential complementary
relationships of different modalities and making better use of
multi-modal data, multi-modal learning is widely used.

Nevertheless, in real application scenarios, the collected
multi-modality data is often incomplete due to various factors.
For example, in the clinic, patients often choose inspection
methods with lower costs due to the economic factor, so it
may not easy to collect complete multi-modal medical data. In
remote sensing observations, some modalities may be missing
in the data collected by the sensors due to the effect of
internal and external interference. Unfortunately, the existing
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multi-modal learning methods can hardly deal with these data
with missing modalities, which limits the application scenarios
of multi-modal learning. A naive solution is to remove the
samples with missing modalities or abandon the incomplete
modalities, but this method exacerbates the few-shots problem,
and a large amount of valuable information is discarded.
Therefore, simply removing samples with missing modalities
is unreasonable.

In order to make better use of data with missing modalities,
a variety of methods of modality imputation and synthesis
have been developed. Some researchers proposed methods
to complete missing modalities based on adversarial strategy
[8–10], these methods have an outstanding performance in
synthesis tasks. The method based on cascaded residual au-
toencoder also has been proposed in [11], the key idea is to
continuously reduce the residual between synthesis data and
real data by using residual autoencoder modules in cascade. To
complete the missing modalities, the pivotal problem is how to
effectively integrate information from existing modalities. To
deal with this challenge, Zhou et al. [12] use autoencoders to
extract features in levels from separate modalities and fuse
them level by level into the final feature map which will
be utilized to synthesis the missing modality by adversarial
strategy. Peng et al. [13] proposed cross-media multiple deep
network (CMDN) to hierarchically combine the inter-media
and intra-media representations to further learn the rich cross-
media correlation by a deeper two-level network strategy, and
finally obtains a shared representation by a stacked network
style. These methods showed notable results in various tasks.
However, these methods mentioned above didn’t fully con-
sider the balance of consistency and complementarity between
modalities. This will cause information loss of some modality
or overly bias toward to some certain modality in the final
synthesis modality data. As a result, a bad performance will
appear in the downstream tasks. It’s a challenging problem
to trade off the consistency and complementarity in synthesis
tasks.

To deal with the challenge mentioned above, this paper
propose method based on a shared latent representation space
model to synthesis missing modality. Specifically, in the
training stage, the proposed method firstly obtained the shared
latent representation and mapping network corresponding to
existing modalities by optimizing the reconstruction loss of
existing modalities, and the shared representation can naturally
capture the information of existing modalities without biases.
Then the synthesis network is trained to generate missing
modality with the shared representation as input, and in which
the convolutional neural network is implemented to extract
deep level information to improve the synthesis performance.
During the testing stage, shared representation among existing
modalities is firstly acquired by minimizing reconstruction loss
with mapping networks fixed, then the final synthesis modality
is obtained by inputting the shared representation into the
synthesis network. In addition, to tackle the over-optimizing
problem during the testing stage, “threshold-loss” is proposed.
The effectiveness of the proposed method has been verified by

experiments.
The main contributions of this paper are as follows:

• We present a missing modality synthesis framework
based on a shared latent representation space model
which can adaptively tradeoff the consistency and com-
plementarity among existing modalities.

• To deal with the problem of over-optimizing, “threshold-
loss” is proposed.

• With extensive experiments, the effectiveness of our
method has been verified.

The rest of this paper will proceed as follows. In Section
II we discuss related works. Our method will be described in
Section III, and be followed with experiments in Section IV.
Then we conclude in Section V.

II. RELATED WORKS

A. Multi-modal Learning

Due to the wide scenarios of multi-modal learning in
real-world applications, researchers have conducted extensive
research on multi-modal learning. A classic way based on
canonical correlation analysis (CCA) [14] is to project dif-
ferent modalities into a common subspace that can maxi-
mize the correlation between multiple modalities, and in this
way, the consistent components among multiple modalities
are extracted. The representative methods include kernelized
canonical correlation analysis (KCCA) [15], deep canonical
correlation analysis (DCCA) [16], deep variational canoni-
cal correlation analysis (DVCCA) [17], etc. Multiple kernel
learning (MKL) [18] exploits kernels that naturally correspond
to different views and combine kernels either linearly or
non-linearly to improve learning performance. A promising
approach is latent multi-view subspace clustering (LMSC)
[19], which seeks the underlying latent representation and
simultaneously performs data reconstruction based on the
learned latent representation.

B. Missing Modality Synthesis

As mentioned above, the problem of missing modalities is
very common in real-world applications, to deal with this prob-
lem, some promising methods have been proposed. Adversar-
ial strategy-based methods show potential in synthesis tasks.
For example, in [9] a novel approach for view imputation via
generative adversarial networks (VIGAN) is proposed, which
combines GAN and DAE to enable the knowledge integration
for domain mappings and view correspondences to effectively
recover the missing view. Cai et al. proposed to take the
existing modality as input and generates the missing modality
by employing auxiliary adversarial loss to generate high-
quality missing modality images in [8]. Different from these
adversarial strategy-based methods, work in [11] proposed to
reduce the residual between synthesis modality and missing
modality with cascaded residual autoencoder module, which
also shows considerable performance.
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Fig. 1. The framework of the proposed method for missing modality synthesis. There are two main components in the proposed framework, including the
mapping network and synthesis network. The mapping network fuses the existing modalities by reconstructing them with common latent representation as
input, and 1d-CNN layers and MLP are employed in the synthesis network to synthesize the missing modality.

III. PROPOSED METHOD

In this section, the details of the proposed method will
be given. There are two main parts in the proposed model,
namely mapping network and synthesis network, which will
be described in detail in III-B and III-C, respectively.

A. Multi-modal Latent Representation Model

Inspired by [19], this paper proposes to apply the multi-
modal latent representation model into the missing modality
synthesis task, which can naturally balance the consistency
and complementary information among the existing modali-
ties in the synthesis modality. The basic assumption is that
existing modalities are mapped from a common latent rep-
resentation in the common latent space, and each modality
contains information from an individual perspective. Formally,

given N samples
{
x
(1)
i ,x

(2)
i , . . . ,x

(M)
i

}N
i=1

with M existing

modalities, we need to find the missing modality x
(M+1)
i in

each sample. Consider the assumption mentioned above, given
N corresponding latent representation vectors {hi}Ni=1, and
mapping network fθm(·) corresponding to modality existing
m, then we have

x
(m)
i = fθm(hi) + e

(m)
i (1)

where e(m)
i denotes the reconstruction error corresponding to

existing modality m in sample i.
Our goal is to find parameter θm and latent representations
{hi}Ni=1 to minimize the reconstruction error e

(m)
i , which

mean the information in existing modalities are adaptively

fused into the latent representation. Accordingly, the objective
function is

min
{hi}Ni=1,{θm}

M
m=1

Lr(X, X̂),

with X =


x
(1)
1 · · · x

(1)
N

...
. . .

...
x
(M)
1 · · · x

(M)
N


and X̂ =

 fθ1(h1) · · · fθ1(hN )
...

. . .
...

fθM (h1) · · · fθM (hN )

 ,
(2)

where hi is randomly initialized. By solving (2), the consistent
and complementary information in existing modalities are
naturally fused into latent representation. With the latent
representation {hi}Ni=1 obtained, we can model the synthesis
process from the fused information to missing modality.

B. Synthesis Network

In order to synthesize the missing modality, the synthesis
network will be trained with latent representation as input,
and missing modality as output. Due to the powerful ability of
feature extraction of convolutional neural network (CNN), here
we use a three-layer 1d-CNN network to extract high-level
features from the latent representation vector. After that, multi-
layer perception network (MLP) with the extracted feature as
input is employed to synthesize the missing modality. The
activation function here we use is the rectified linear unit
(ReLU) function. The detailed structure is illustrated in Fig.
1. The objective function is
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Fig. 2. The reconstruction error and synthesis error during the testing stage
of the proposed method without threshold. It shows that as the reconstruction
error decreasing, the synthesis error will first decrease to the lowest value,
and then increase and stabilize at a certain value.

min
φ
Ls(X(M+1), X̂(M+1)),

with X(M+1) =
[
x
(M+1)
1 · · · x

(M+1)
N

]
and X̂(M+1) =

[
gφ(h1) · · · gφ(hN )

]
,

(3)

where x
(M+1)
i is the ground-truth of the missing modality of

sample i, gφ(·) denotes the synthesis network which contains
1d-CNN layers and MLP layers, and φ is the parameter of
synthesis network. By minimizing (3), the synthesis network
is obtained.

C. Testing Stage

During the testing stage, we have Ntest testing samples{
x
(1)
j ,x

(2)
j , . . . ,x

(M)
j

}Ntest

j=1
with M existing modalities, our

goal is to obtain the common latent representations {hj}Ntest

j=1
of testing samples to fuse the information of the existing
modalities. The basic idea is fixing the mapping network
parameter and minimizing the reconstruction error by solving
the objective function

min
{hj}Ntest

j=1

Lr(Xtest, X̂test),

with Xtest =


x
(1)
1 · · · x

(1)
Ntest

...
. . .

...
x
(M)
1 · · · x

(M)
Ntest


and X̂test =

 fθ1(h1) · · · fθ1(hNtest
)

...
. . .

...
fθM (h1) · · · fθM (hNtest

)

 .
(4)

Once the latent representations {hj}Ntest

j=1 obtained, the
missing modality can be synthesized by inputting the latent

representation to the synthesis network. However, notice that
due to the difference between the objective function of the
training stage and the testing stage, there is a gap between the
latent representations of the two stages. Specifically, there is
an over-optimizing phenomenon in the latent representations
of the testing stage. In other words, as the reconstruction
error decreasing, the synthesis error will first decrease to the
lowest value, then increase and stabilize at a certain value,
as Fig. 2 illustrated. That is, the best latent representations
are not obtained. Unfortunately, the ground truth of missing
modality doesn’t exist in real-world applications, so we cannot
simply save the best latent representations according to the
lowest synthesis error. To tackle this problem, we propose a
“threshold-loss” and the final objective function (4) becomes

min
{hj}Ntest

j=1

Lthreshold(Xtest, X̂test)

=
∣∣∣Lr(Xtest, X̂test)− α

∣∣∣ ,
with Xtest =


x
(1)
1 · · · x

(1)
Ntest

...
. . .

...
x
(M)
1 · · · x

(M)
Ntest


and X̂test =

 fθ1(h1) · · · fθ1(hNtest
)

...
. . .

...
fθM (h1) · · · fθM (hNtest

)

 ,

(5)

where α is a hyper-parameter. In this way, as the optimization
progresses, the reconstruction error will stop decrease at a
threshold, which means over-optimizing phenomenon is al-
leviated.

IV. EXPERIMENTS AND RESULTS

In this section, our experimental settings are described,
including the detail of dataset, comparison methods, evaluation
metrics, and implementation details. The results are given in
IV-B.

A. Experimental Settings

Our experiments are conducted on Handwritten1 dataset.
This dataset consists of features of 10 handwritten numerals
(‘0’ to ‘9’) extracted from a collection of Dutch utility maps.
200 samples per class (for a total of 2,000 samples) have
been digitized in binary images. These digits are represented
in terms of the following six feature sets (files):
• mfeat-fou: 76 Fourier coefficients of the character shapes.
• mfeat-fac: 216 profile correlations.
• mfeat-kar: 64 Karhunen-Love coefficients.
• mfeat-pix: 240 pixel averages in 2 × 3 windows.
• mfeat-zer: 47 Zernike moments.
• mfeat-mor: 6 morphological features.
In our experiments, we choose “mfeat-pix” as the missing

modality to be synthesized since this modality can be visu-
alized, and “mfeat-kar” and “mfeat-fou” as existing modality

1https://archive.ics.uci.edu/ml/datasets/Multiple+Features
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Fig. 3. All results of the proposed method and comparison methods. The “M2” means “Modality 2”, and “Concat” means “Concatenate”. The “Proposed1”
denotes the proposed method without threshold, and the “Proposed2” is opposite. Intuitively, the performance of the proposed method with threshold is the
best. All results are from the same testing sample.

TABLE I
THE EXPERIMENTS RESULTS OF ALL COMPARISON METHODS (MEAN ± STANDARD DEVIATION). RMSE AND PSNR ARE EMPLOYED TO EVALUATE

THE PERFORMANCE OF PROPOSED METHOD, AND THE PROPOSED METHOD WITH THRESHOLD OUTPERFORM ALL OTHER METHODS.

Methods M2 CCA Concat Proposed1 Proposed2

RMSE↓ 0.385±0.009 0.367±0.001 0.219±0.003 0.219±0.004 0.204±0.003
PSNR↑ 8.293±0.205 8.710±0.006 13.210±0.129 13.244±0.151 13.790±0.132

1 and modality 2, respectively. 1,600 samples are randomly
selected for training, 400 samples for testing.

We compared proposed method with following methods:
• Modality 2: Only modality 2 is used to synthesize the

missing modality.
• CCA[14]: Project existing modalities into common

low-dimensional subspace, and concatenate the low-
dimensional feature vectors to synthesize the missing
modality.

• Concatenate: Just simply concatenate the existing
modalities without any fusion, then synthesize the miss-
ing modality with the concatenated feature vector.

The details of implements of the proposed method are as
follows: the dimension of latent representation vector is 256,
and we simply model the mapping network as four-layers
MLP with three hidden layers where 512, 256, and 128 hidden
units are employed, respectively. In the synthesis networks, we

employed three 1d-CNN layers with kernel size equals 3 and
stride equals 1, and the channels number are 128, 128, and 128,
respectively. ReLU activation function and max-pooling sub-
sampling operation are employed after each 1d-CNN layer.
After the 1d-CNN layer, a two-layers MLP with 4096 hidden
units is employed to synthesize the missing modality.

The evaluation metrics used in our experiments are Root
Mean Square Error (RMSE) and Peak Signal-to-Noise Ratio
(PSNR). Given output value x̂i and ground-truth xi of sample
i, RMSE is calculated with

RMSE =

√√√√ 1

N

N∑
i=1

(xi − x̂i)2 (6)

where N is the number of samples. And PSNR is defined as

PSNR = 20 · lg MAX

RMSE
(7)
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where MAX denotes the maximum value of output, and
it equals 1 since we normalize the output of the synthesis
network. Note that a lower RMSE, a higher PSNR mean a
high quality of synthesis modality.

B. Results

We evaluated the proposed method by comparing it with
the methods mentioned above, the results are shown in Table
I. The “M2” in column 2 means “Modality 2”, and “Concat”
in column 3 means “Concatenate”. The “Proposed1” denotes
the proposed method without threshold, and the “Proposed2” is
opposite. There are two evaluation metrics in our experiments,
and from Table I we can see that the proposed method
outperforms all compared methods in all two metrics. All
methods are run 10 times and the mean values and standard
deviations are reported.

Firstly, the proposed method is far superior to the result of
using only one existing modality for the synthesis task, which
means that it is meaningful to fuse multi-modal information in
the missing modality synthesis task, and the proposed method
is effective on this. It can be seen from column 2 of Table
I that the proposed method performs better than CCA, this
suggests that it is not enough to only use the consistency
information in the existing modalities, the useful information
in the existing modalities is seriously lost in CCA since it
reduces the dimensions of data to 1. Compared with simply
concatenating the existing modalities, the proposed method
also performs better since the concatenating operation cannot
well balance the consistency and complementary information
of the existing modalities, and the proposed method can handle
this problem well. In addition, compared with the proposed
method without the threshold, the method with the threshold
performs better, which shows that the proposed threshold-
loss can effectively alleviate the over-optimizing phenomenon
during the test stage. In order to qualitatively compare the
performance of the proposed method with other methods, all
results of synthesis are shown in Fig. 3.

V. CONCLUSION

In this work, we propose a novel method to synthesize the
missing modality. Specifically, we utilize the common latent
representation space model to adaptively fuse the consistent
and complementary information in existing modalities, and
then a synthesis network with 1d-CNN layers and MLP is em-
ployed to synthesize the missing modality. The experimental
results suggest that our method outperforms other methods.
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