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Abstract—Graph node anomaly detection has important appli-
cations in practical scenarios. Although many graph neural
networks (GNNs) have been proposed, how to design tailored
spectral filters for node anomaly detection to fully mine high-
frequency signals in the graph is still a challenge. Most GNNs
are equivalent to low-pass filters and mine multiorder signals
through a series structure. The computational cost increases
as the number of layers increases and further leads to an
over-smoothing problem. They mainly focus on low-frequency
signals and suppress high-frequency signals, thus smoothing the
differences between abnormal and normal nodes, making them
indistinguishable. Due to the difficulty in mining high-frequency
signals, the poorly distinguishable feature representations learned
by low-pass GNNs can even harm the performance of data
augmentation. To solve the above challenges, in this article, we
propose a OR-gate mixup multiscale spectral GNN (MMGNN)
from the spectral domain. Specifically, we design multiorder mul-
tiscale bandpass filters through the superposition of polynomial
spectral filters and then decompose them into preprocessing parts
and training parts to form a double-parallel structure, which
can effectively mine high-frequency signals in the graph and
reduce computational cost. Finally, we propose OR-gate mixup
to perform data augmentation in the spectral space to improve
model generalization. Experimental results on four real-world
datasets demonstrate the effectiveness of the proposed MMGNN
against the state-of-the-art methods.

Index Terms—Graph data augmentation, graph neural net-
works (GNNs), graph pattern mining, graph representation
learning, node anomaly detection.

I. INTRODUCTION

ANOMALIES or outliers refer to rare objects that are
different from most normal objects. Due to the scarcity

of abnormal patterns, anomalies are difficult to detect and
often cause huge economic losses once they occur. Therefore,
anomaly detection has attracted much attention due to its
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Fig. 1. Connection relationship between normal and abnormal in the graph.
In graphs containing anomalies, normal nodes still tend to connect to normal
nodes with similar features (low-frequency information), while abnormal
nodes tend to connect to normal nodes with dissimilar features (high-
frequency information).

important applications in many fields, such as equipment fault
operation and maintenance [1], [2], financial risk control [3],
and telecom fraud detection [4]. It is used to monitor abnormal
signals between sensors, detect suspicious transactions in
financial networks, identify fraudsters in telecommunications
networks, and mine fake reviews on e-commerce shopping
platforms. Graph-structured data is ubiquitous in practical sce-
narios, representing complex interaction relationships through
edges (which can dynamically change) connected between
multiple entities without positional relationships. Due to the
non-Euclidean structure of the graph and the complex depen-
dency between nodes, graph node anomaly detection is more
challenging than that of conventional data structures and needs
further exploration [5].

With the development of graph neural networks (GNNs),
researchers have applied them to node anomaly detection
[6], [7], [8], [9], [10]. Most GNNs are proposed based on
the homophily assumption (i.e., adjacent nodes have simi-
lar features), and they perform well on many graph tasks
because most graphs in the real world follow the homophily
assumption. However, they perform poorly in node anomaly
detection because, in graphs with anomalies, normal nodes
still tend to connect to normal nodes with similar features,
while abnormal nodes tend to connect to normal nodes with
dissimilar features [11], as shown in Fig. 1. The connection of
dissimilar nodes results in graphs with anomalies exhibiting
heterophily opposite to homophily [12], [13]. Heterophily
refers to the phenomenon of edge connections between nodes
belonging to different classes (e.g., the abnormal and normal
classes in anomaly detection) [14], [15], [16], [17], [18].
Recent studies [19], [20] have shown that abnormal nodes
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connecting dissimilar features can cause the spectral energy
distribution of the graph to shift to the high frequency, meaning
that the spectral energy distribution concentrates less in the
low frequency and more in the high frequency. Mining high-
frequency signals is beneficial for node anomaly detection.
However, the expressive power of GNNs based on homophily
is limited to low-pass filters [21], [22], so they can only
focus on low-frequency signals and suppress high-frequency
signals in the graph, thereby smoothing the difference between
abnormal features and normal features, making nodes indis-
tinguishable.

To overcome the shortcomings of low-pass GNNs in node
anomaly detection, choosing tailored spectral filters is crucial
[19]. Some recent works [19], [20] select multiple sets of filters
beyond low pass that focus on both low- and high-frequency
signals. However, these filters are usually symmetrical across
frequency bands and may treat low- and high-frequency sig-
nals equally at the same scale. There is still a risk of remixing
low- and high-frequency signals during model training, and
only signals of the same order can be mined. To further
mine high-order signals, higher-order filters are needed, but
as the order increases, the computational cost also increases,
which is detrimental to large-scale graph training. Most GNNs
mine high-order signals through the series structure, resulting
in an over-smoothing phenomenon [21], [23], forcing the
representations of adjacent nodes to be similar. The more
layers there are, the greater the risk of over-smoothing [24],
[25], [26], the more difficult it is to distinguish nodes, and
the higher the computational cost. It is a challenge to design
beyond low-pass filters that can mine higher-order signals at
multiscale for node anomaly detection.

Due to the scarcity of abnormal patterns, most GNNs
have poor detection ability for rare abnormal samples. Data
augmentation can improve model performance and general-
ization by adding training data [27]. However, the low-quality
representations learned by low-pass GNNs make it difficult to
distinguish abnormal nodes from normal nodes and further
deteriorate the effectiveness of data augmentation. Mean-
while, current graph data augmentation methods [28], [29],
[30] mainly focus on features and structural augmentation,
obtaining multiple augmented views through features masking,
nodes discarding, edges adding/deleting, and graph random
walk. However, features and structural information between
augmented views cannot be shared, easily introducing addi-
tional computational costs, which is detrimental to large-scale
graph training. For node-level and edge-level tasks, nodes
are interconnected, and features are not i.i.d. Changes in
node features and graph topology may modify the signal
distribution on the entire graph, which can also make node
features indistinguishable. More efficient graph data augmen-
tation methods need to be designed for detecting difficult
anomalies.

To solve the above problems, we propose a OR-gate
mixup multiscale spectral GNN (MMGNN) from the spectral
domain, which is based on a novel double-parallel structure
and differs from the traditional series structure. Specifically,
we design multiorder multiscale bandpass filters through the
superposition of polynomial spectral filters and then decom-

pose them into the preprocessing part and the training part (i.e.,
multiplier filters and multiplicand filters), forming the double-
parallel structure. We preprocess the graph using parallel
multiplier filters to obtain multiorder information and then
use parallel multiplicand filters to train the preprocessed graph
end-to-end like most GNNs. The double-parallel structure can
use more high-order filters to multiscale mine high-frequency
signals in the graph within the rated training time, improving
the performance. Finally, to overcome the scarcity problem
of abnormal patterns, we perform OR-gate mixup data aug-
mentation in the spectral space to improve the generalization
of the model. Since our model is based on the double-parallel
structure and performs data augmentation in the spectral space,
the additional computational cost is less, which is beneficial
for large-scale graph training. The main contributions of this
article are summarized as follows.

1) By analyzing the superposition and decomposition of
polynomial spectral filters, we innovatively proposed a
double-parallel structure to decompose designed multi-
order multiscale bandpass filters into the nonparametric
preprocessing part and the learnable training part, which
can fully mine high-frequency signals to improve node
anomaly detection performance and reduce training
computation. The double-parallel structure provides new
inspiration for designing computational acceleration
algorithms on large-scale graphs.

2) We propose a spectral-based graph data augmentation
method called OR-gate mixup. By performing feature
mixups in the spectral space after signals filtering,
we reduce computational costs and avoid full graph
perturbations caused by changing the original fea-
tures. Performing OR-gate mixup on labels can avoid
the risk of vanilla mixup classification boundary blur,
improve model generalization, and reduce overfitting
risk.

3) Experimental results on four real-world datasets show
that the proposed MMGNN is competitive with the
state-of-the-art methods. The experimental analysis also
indicates that multiorder bandpass filters are beneficial
to node anomaly detection, while multiorder low-pass
filters are harmful. These provide experimental support
to design tailored spectral filters with better performance
for node anomaly detection.

The rest of this article is organized as follows. Section II
reviews the related work. Section III provides preliminaries
and problem definitions. Section IV introduces the design of
our multiorder multiscale bandpass filters and the decompo-
sition method for high-order filters. Section V introduces the
proposed MMGNN model. Section VI reports the experimen-
tal settings and results. Section VII concludes this article and
suggests future work.

II. RELATED WORK

A. Graph Node Anomaly Detection

In the real world, various complex application scenarios
generate a large amount of graph-structured data. As an
effective method for analyzing graphs, GNNs are widely
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used to solve the problem of graph node anomaly detection.
DOMINANT [6] built a GCN autoencoder for structure and
attributes to optimize the reconstruction loss to find anomalies.
GraphConsis [7] constructed multiple relations into a single
homograph and then used GNNs and attention mechanisms
to aggregate neighborhood information for node anomaly
detection. CARE-GNN [12] and PC-GNN [13] constructed
multiple homographs based on node relations and adaptively
pruned edges according to neighbor distribution. PAMFUL
[8] proposed an error-bounded distribution-aware margin loss
function to mine abnormal nodes through collaborative pattern
mining and feature learning. However, the above methods use
GNNs equivalent to low-pass filters for node anomaly detec-
tion, which cannot effectively mine high-frequency signals in
the graph to further improve the distinguishability between
abnormal and normal nodes.

B. Spectral GNNs

Spectral GNNs (SGNNs) are generally GNNs equipped
with spectral filters defined from the spectral domain.
Bruna et al. [31] developed a graph convolution method based
on spectral graph theory. Defferrard et al. [32] reduced compu-
tational complexity by using k-order truncation of Chebyshev
polynomial as the filter. Kipf and Welling [33] introduced
a first-order approximate ChebNet as the filter, avoiding the
Laplacian matrix eigendecomposition, so that the model can
obtain more distant information in graphs by stacking layers.
Other GNNs [34], [35], [36] developed from the spatial
domain can be approximated as using first-order low-pass
filters, which more focus on low-frequency signals rather than
high-frequency signals, and improved expressive power by
connecting GNN layers in series. However, for graphs with
anomalies, stacking multiple layers of low-pass filters can
lead to indistinguishable nodes. Balcilar et al. [22] tried to
prove that most GNNs are just equivalent low-pass filters
and demonstrated the necessity of bandpass and even high-
pass filters for more challenging heterophily graph analysis
tasks. By setting a group of learnable convolution kernels
for heterophily graphs, Yun et al. [37] obtained multihop-
rich information in an approximately parallel manner, but fully
parameterized convolutional kernels bring more computational
overhead. BWGNN [19] and AMNet [20] selected specific
bandpass filters of the same order, which can simultaneously
capture low-frequency signals and high-frequency signals for
node anomaly detection. However, these are only preliminary
attempts at bandpass filters, and the potential performance
development of bandpass filters still needs further research.

C. Graph Data Augmentation

Data augmentation techniques are widely used in computer
vision [38] and natural language processing [39], and a large
amount of domain knowledge is used to design appropriate
data transformations to improve generalization and perfor-
mance. However, the graph data augmentation mechanism has
not been clarified due to the complex non-Euclidean structure
of graph data, and related exploration is still insufficient.
Zhao et al. [40] used a modified graph structure for training,

Rong et al. [41] and Feng et al. [42] randomly removed edges
and nodes from the training graph, You et al. [43] performed
random masking operations on node features, Kong et al.
[44] augmented node features with gradient-based adversarial
perturbations, and Sun et al. [45] combined features aug-
mentation and structure augmentation. However, these graph
augmentation methods that mask/add/delete features or edges
are sensitive to operations, and slight perturbations to the graph
may change the signal distribution of the entire graph, which
is detrimental to node-level classification tasks such as node
anomaly detection. Han et al. [46] performed linear interpo-
lation on training samples based on mixup [47] to generate
new samples. However, for anomaly detection, reliable soft
prediction probabilities are required, and vanilla mixups may
reduce the distinguishability between abnormal and normal
nodes, resulting in blurred classification boundaries.

III. PRELIMINARIES

In this section, we first introduce the notations and problem
definition of node anomaly detection (Section III-A) and
then introduce the spectral filters and their commonly used
polynomial methods to construct SGNNs (Section III-B).

A. Notations and Problem Definition

We focus on the task of node anomaly detection in attributed
graphs. Let G = {V , E , X} be an undirected graph, V =

{v1, v2, . . . , vN} is the set of all N nodes, E = {ei j} is the set
of all edges, X ∈ RN×d denotes the node feature matrix. A
represents the adjacency matrix, Ai j = 1 means there is an
edge between vi and v j, else Ai j = 0. D ∈ RN×N is the
degree matrix with Dii =

P
j Ai j. yi is the ground truth of

vi, yi = 0 indicates normal, and yi = 1 indicates abnormal.
Due to the scarcity of abnormal patterns, there is a sample
imbalance in anomaly detection, that is, |Va| � |Vn|, where
Va is the abnormal set and Vn is the normal set, satisfying
Va∪Vn = V and Va∩Vn = ∅. The node anomaly detection task
can be regarded as a class-imbalanced binary classification
problem. In this article, we focus on attribute anomalies and
leave structural anomalies to future work.

B. Polynomization of Spectral Filters

The Laplacian matrix L is defined as D − A (regular)
or I − D−1/2 AD−1/2 (normalized), where I is the identity
matrix. According to the theory of graph signal processing
[48], L can be eigendecomposed into L = UΛUT based
on the graph Fourier transform, thereby defining the graph
filtering operation, where Λ = diag[λ1, . . . , λN] is a diagonal
matrix composed of eigenvalues, λ represents the eigenvalues,
and U is a matrix composed of eigenvectors corresponding
to eigenvalues. For normalized L, its eigenvalue range is
[0, 2]. Different eigenvalues represent information of different
frequencies in the graph. A signal x ∈ RN is filtered by a filter
g as

z = g ? x = Ug (Λ) UT x (1)

where g(·) is a filter defined in the spectral domain at [λ1, λN]
and z ∈ RN is the filtered frequency signal. When performing
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Fig. 2. When C = 2. (a) Two multiplier filters, which are second-order and fourth-order, respectively. (b) Vanilla Beta filters are equivalent to second-order.
(c) Equivalent fourth-order superimposed filters. (d) Equivalent sixth-order superimposed filters. (e) All nine filters after superposition.

graph filtering operation, the L eigendecomposition of large-
scale graphs requires a large amount of computation, so the
polynomial fitting filter function method [32] is generally used
to reduce the computational complexity

g ? x = U

 
KX

k=0

αkΛ
k

!
UT x =

KX
k=0

αkUΛkUT x

=

KX
k=0

αk Lk x = g (L) x (2)

where αk is a polynomial parameter and g(L) is a kth-
order polynomial filter function. For the node feature matrix
X ∈ RN×d, there is a matrix form

Z = g (L) X. (3)

It is worth noting that since abnormal nodes are often cun-
ningly connected to large amounts of normal neighborhoods,
signals in the graph are biased toward high-frequency [19].
Most GNNs are equivalent to low-pass filters, focusing on low-
frequency signals and suppressing high-frequency signals, thus
smoothing the difference between abnormal and normal nodes,
resulting in poor performance. Therefore, designing tailored
spectral filters that focus more on high-frequency signals is
the key to improving node anomaly detection performance.

IV. MULTIORDER MULTISCALE FILTERS DESIGN

In this section, we first introduce the self-superposition
of same-order filters to construct our multiorder multiscale
bandpass filters that focus more on high-frequency signals
(Section IV-A). Then, we decompose the multiorder multiscale
bandpass filters into the preprocessing part and the training
part to reduce computational cost (Section IV-B). The designed
multiorder multiscale bandpass filters are the key to our
proposed MMGNN model.

A. Multiorder Multiscale Bandpass Filters

In node anomaly detection, the spectral energy distribu-
tion in graphs shifts to the high-frequency part [19] due to
the presence of abnormal nodes, thus models focusing on
multiscale high-frequency signals can better learn the differ-
ence between abnormal and normal features to improve node
distinguishability. To overcome the shortcoming of low-pass
filters that ruthlessly filter out high-frequency signals, we use

graph wavelet transform to design our multiorder multiscale
bandpass filters.

Wavelets have proved to be an exceptionally useful tool
for signal processing, they can simultaneously localize signal
content in both space and frequency. Hammond et al. [49]
proposed the graph wavelet transform, using the basis com-
posed of the eigen functions of the Laplacian matrix L to
construct a group of wavelets from the “mother” wavelet ψ as
W = (Wψ0 ,Wψ1 , . . . ,WψC ). A single graph wavelet transform
can be written as

Wψi (X) = Ugi (Λ) UT X = gi (L) X. (4)

This is not much different from graph convolution used by
most GNNs. However, according to the Parseval theorem,
the graph wavelet transform needs to satisfy the admissible
condition Z ∞

0

|gi (w)|2

w
dw = Cg < ∞. (5)

This guarantees that gi(·) performs like a bandpass filter
rather than a low-pass filter in the spectral domain. Graph
wavelet transform can cover different frequency bands through
a group of parallel filters {g0, g1, . . . , gC}. However, for the
same group of filter functions, their orders are the same. Here,
we specifically use the discrete polynomial Beta wavelet filter
function [19], [50]

Wp,q = Uβp,q (Λ) UT = βp,q (L) =

� L
2

�p �I − L
2

�q

2B (p + 1, q + 1)
(6)

where p, q ∈ N and B(p + 1, q + 1) = p!q!/(p + q + 1)! is a
constant. Constraining p+q = C ∈ N+, then a group of C+1
filter functions of the same c-order is formed. When C = 2, all
three filter functions are shown in Fig. 2(b). We simply write
β0,2(λ) = g0(λ), β1,1(λ) = g1(λ), and β2,0(λ) = g2(λ).

Fig. 2(b) shows that Beta filters include not only low-pass
but also bandpass and high-pass filters, which can capture
both low-frequency and high-frequency signals. But when C is
determined, the same group of filters are of the same order. To
further mine multiorder high-frequency signals, it is necessary
to define multiple groups of filters using different C. However,
when C is larger and the order is higher, the computational cost
increases, which is bad for large-scale graph training. At the
same time, vanilla Beta filters are symmetrical in the frequency
band, which may treat low-frequency and high-frequency sig-
nals equally, making it difficult to mine multiscale differential
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information. There is still a risk of remixing low- and high-
frequency signals during model training, resulting in poor
performance.

To overcome the above shortcomings of vanilla Beta filters,
we further design our multiorder multiscale bandpass filters.
After filters polynomialization, βp,q(λ) is a polynomial in λ.
Intuitively, we can obtain multiorder filters by superimposing
(i.e., multiplying) polynomial filters of different orders or
the same order, because generally, the multiplication of two
polynomials is still a polynomial.

Definition 1 (Polynomial Multiplication): Let p(x) and q(x)
be polynomials of order rp and rq on the field P, respectively,
and rp, rq ∈ N

+. Define p(x)q(x) = f (x) as the polyno-
mial multiplication, and the order of f (x) is r f , satisfying
r f = rp + rq.

Since the superposition of polynomial filters of different
orders inherently involves the calculation of multiple filters of
different orders, particularly, we analyze the self-superposition
of same-order filters. Here, we still analyze the group of vanilla
Beta filters when C = 2 in Fig. 2(b), selecting g1(λ) and g2(λ)
to construct two multiplier filters (to distinguish them from
multiplicand filters) for subsequent superposition operations.
The first multiplier filter is g2(λ), and the second multiplier
filter is denoted as g21(λ), calculated as follows:

g2 (λ) · g1 (λ) = g21 (λ) . (7)

The curves of these two multiplier filters g2(λ) and g21(λ) are
shown in Fig. 2(a). It can be seen that they are both beyond
low-pass filters. Then, we use the three vanilla Beta filters of
group0 in Fig. 2(b) as the multiplicand filters and multiply
them with the multiplier filters in full arrangement

g0 (λ) · g2 (λ) = g02 (λ)
g1 (λ) · g2 (λ) = g12 (λ)
g2 (λ) · g2 (λ) = g22 (λ)

9=; group1 (8)

g0 (λ) · g21 (λ) = g021 (λ)
g1 (λ) · g21 (λ) = g121 (λ)
g2 (λ) · g21 (λ) = g221 (λ)

9=; group2. (9)

Now, we get group1 and group2, two groups of new filters,
where group1 is shown in Fig. 2(c) and group2 is shown
in Fig. 2(d). It is worth noting that after superposition, the
new filters of group1 are equivalent to fourth-order, and the
new filters of group2 are equivalent to sixth-order, both of
which have bandpass and high-pass properties. The vanilla
Beta filters of group0 are equivalent to second-order. The filters
of group0, group1, and group2 together form our multiorder
multiscale bandpass filters. They focus more on multiscale
high-frequency signals in the graph, fully mining the differ-
ences between abnormal and normal features, thus improving
node distinguishability.

Without loss of generality, the superposition between
vanilla filters of different orders also has similar properties.
In Section VI-H, we will further analyze the impact of spectral
filter properties on node anomaly detection.

B. Decomposition of High-Order Filters

As shown in Fig. 2(e), by superposing Beta filters of the
same order, we have constructed our multiorder multiscale

bandpass filters. For C = 2, a total of nine filters can
be obtained after superposition, which is more effective for
capturing high-frequency differential signals between nodes.
However, additional high-order filters will increase the compu-
tational cost, which is detrimental to large-scale graph training.
Therefore, we provide a method to reduce the computational
cost of high-order filters. For polynomial filters, the multiplica-
tion of two polynomials is still a polynomial, and conversely, a
high-order reducible polynomial can be decomposed into two
lower-order polynomials.

Definition 2 (Reducible Polynomial): Let f (x) be a poly-
nomial of order r f on the field P. If there are nonconstant
polynomials p(x) and q(x) of order less than r f on P, satisfying
f (x) = p(x)q(x) and r f = rp + rq, then f (x) is defined as
reducible polynomial on the field P, otherwise irreducible
polynomial.

Therefore, for a high-order reducible polynomial filter g f (λ),
it can be split into two low-order filters, the multiplicand filter
gp(λ) and the multiplier filter gq(λ)

g f (λ) = gp (λ) · gq (λ) . (10)

The order relationship satisfies r f , rp, rq ∈ N
+ and r f = rp+rq.

So, in the graph wavelet transform, the following calculation
decomposition can be performed:

g f (L) X =
�
gp (L) · gq (L)

�
X

= gp (L)
�
gq (L) X

�
= gp (L) Xq (11)

where Xq = gq(L)X. This means that for complex high-order
filtering, we can calculate Xq first and then g f (L)X = gp(L)Xq.
Due to the good inductive bias of bandpass filters, we can
decompose the designed multiorder multiscale band-bass fil-
ters into a nonparametric preprocessing part (using multiplier
filters) and a learnable training part (using multiplicand filters),
thereby reducing the computational cost of high-order filtering,
which is beneficial for large-scale graphs training. The double-
parallel structure formed by the decomposition method will be
introduced in Section V-A.

V. PROPOSED MODEL

In this section, we introduce our proposed OR-gate
MMGNN in detail. The overall framework is shown in Fig. 3.
First, by decomposing the designed multiorder multiscale
bandpass filters into the preprocessing part and the train-
ing part, a double-parallel structure is formed to effectively
mine high-frequency signals and reduce computational cost
(Section V-A). Then, we propose OR-gate mixup to perform
data augmentation in the spectral space after parallel filtering
in the training part, avoiding additional views and improving
model generalization (Section V-B). Finally, we discuss the
differences between our proposed MMGNN and previous
works and summarize our highlights (Section V-C).

A. Double-Parallel Structure

In Section IV-A, we have constructed our multiorder mul-
tiscale bandpass filters. Now, to reduce the computational
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Fig. 3. Framework of the proposed MMGNN. Decompose the multiorder multiscale bandpass filters into a double-parallel structure consisting of a preprocessing
part and a training part. First, obtain multiorder information through the multiplier filters in the preprocessing part and then use another learnable multiplicand
filter to capture multiorder and multiscale frequency signals from the preprocessed graph and concatenate them. Perform OR-gate mixup in the filtered spectral
space. The concatenated signals and mixup signals are finally transmitted to the classifier to obtain the prediction results.

cost of parallel high-order filtering, we decompose them
into preprocessing parts and training parts. We first use the
multiplier filters g2(λ) and g21(λ) constructed in Section IV-A
to preprocess the graph without parameterization to extract
high-order information

X2 = g2 (L) X (12)
X21 = g21 (L) X (13)

where X2 ∈ R
N×d is the second-order feature matrix and

X21 ∈ R
N×d is the fourth-order feature matrix. We keep

the input and output dimensions of filters consistent. Then
concatenate them along the feature dimension

Xm = [X; X2; X21] (14)

where Xm ∈ R
N×3 d is the multiorder feature matrix. The

above preprocessing for extracting multiorder information is
the first parallel structure of the double-parallel structure. The
preprocessed graph is then fed into the training model for end-
to-end training. First, the multiorder features are embedded

H = Embedding (Xm) (15)

where Embedding(·) is a simple two-layer MLP with ReLU
activation function. Then, the multiplicand filters [i.e., vanilla
Beta filters with C = 2 in Fig. 2(b)] described in Section IV-A
are used for parallel filtering [19] in the training part, and the
frequency signal Zk filtered by the kth multiplicand filter is

Zk = gk (L) H. (16)

The parallel structure of the preprocessing part and the
training part jointly constitute the double-parallel structure,
completing the filtering operations of our designed mul-
tiorder multiscale bandpass filters, which can fully mine
high-frequency signals in the graph. Because the filtered
signals obtained by parallel filtering in the training part have
different frequency characteristics, we directly concatenate
them along the feature dimension

Z = [Z0; Z1; . . . ; ZC] (17)

where Z is the multifrequency signal matrix in the spectral
space after concatenating.

Overall, decomposing the constructed multiorder multi-
scale bandpass filters into the double-parallel structure not
only avoids the additional computational cost of high-
order filtering but also avoids the feature transformation

Fig. 4. Beta distribution probability density curve.

of equal status for all filtered signals during training, pre-
serving good inductive bias of bandpass filters, which is
a balance between parametric and nonparametric. Due to
the extraction of high-order information in the prepro-
cessing part, only second-order computations are needed
during training to simultaneously mine second-, fourth-,
and sixth-order high-frequency signals.

B. OR-Gate Mixup

Benefiting from the excellent signal mining ability of our
designed multiorder multiscale bandpass filters, we argue that
data augmentation in the filtered spectral space (rather than the
original feature space) is beneficial, without adding additional
views to increase the computational cost. So, we propose OR-
gate mixup to improve model generalization and alleviate the
risk of overfitting during training. Specifically, we perform
linear interpolation [47] between multifrequency signals z of
training samples after parallel filtering in the training part to
construct virtual samples

z̃ = γzi + (1 − γ) z j (18)

where z̃ is the mixup multifrequency signal and (zi, yi) and
(z j, y j) are two samples randomly drawn from the training
data. γ ∼ Beta(α, α) is sampled from the Beta distribution,
and γ ∈ [0, 1]. The parameter α controls the shape of the Beta
distribution, indirectly controlling the strength of interpolation
between two samples. In practice, we set α to 2.0. The Beta
distribution probability density curve is shown in Fig. 4.
Vanilla mixup [47] does the same interpolation for labels;
however, this can lead to blurred classification boundaries.
Differently, we design OR-gate mixup for labels

ỹ = yi|y j. (19)

The label combination truth table of OR-gate mixup is
shown in Table I. Intuitively, as long as there is a tiny real
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TABLE I
OR -GATE MIXUP TRUTH TABLE

abnormal information in the signal, we should consider it
100% as an abnormal category. Such abnormal categories are
often difficult to detect, but our OR-gate mixup can construct
such potential samples to improve the detection ability for dif-
ficult abnormal samples. OR-gate mixup makes fewer changes
to the distribution of abnormal and normal quantities while
performing data augmentation. At the same time, it directly
operates on node-level features, which causes less disturbance
to the signal distribution of the entire graph and is beneficial
for improving model generalization.

Finally, z and z̃ are sent to their respective projection
heads (one-layer MLP with the ReLU activation function)
for transformation and fed into the shared classifier (two-
layer MLP with the ReLU activation function) to output the
prediction probabilities pi and p̃i

pi = classifier
�
projection1 (zi)

�
(20)

p̃i = classifier
�
projection2 ( z̃i)

�
. (21)

We use weighted cross-entropy as the loss function

Lo =
X

i

�
wyi log (pi) + (1 − yi) log (1 − pi)

�
(22)

Lm =
X

i

�
w̃ỹi log (p̃i) + (1 − ỹi) log (1 − p̃i)

�
(23)

where w and w̃ are the ratio of normal labels to abnormal
labels. The overall objective function is L = β1Lo + β2Lm,
and β1 and β2 are hyperparameters for balancing Lo and Lm,
and we set β1 and β2 to 0.5. When testing the performance of
the model, we only use the prediction probability pi.

Algorithm 1 Preprocessing Part of the MMGNN
Input: Attributed graph G = {V , E , X ∈ RN×d}; Vanilla Beta

filters g1(λ) and g2(λ) when C = 2.
Output: Preprocessed graph G = {V , E , Xm ∈ R

N×3 d}.
1: X2 ← g2(L)X;
2: X21 ← g1(L)X;
3: X21 ← g2(L)X21;
4: Xm ← [X; X2; X21];

The pseudocode of our proposed MMGNN model is
described in Algorithms 1 and 2.

C. Differences and Highlights

Here, we discuss the differences between our proposed
MMGNN and previous works and summarize our highlights.
The series structure in Fig. 5(a) captures long-distance infor-
mation in graphs by stacking multiple identical GNNs. The

Algorithm 2 Training Part of the MMGNN
Input: Preprocessed graph G = {V , E , Xm ∈ R

N×3 d}; Vanilla
Beta filters g0(λ), g1(λ) and g2(λ) when C = 2; Beta
distribution parameter α.

Output: Category prediction probability pi for all nodes.
1: for each iteration do
2: H ← Embedding(Xm);
3: for k = 0, . . . ,C do
4: Zk ← gk(L)H;
5: end for
6: Z ← [Z0; Z1; . . . ; ZC];
7: eZtrain

,eYtrain
← shuffle the arrangement of node features

and labels in the training set (Ztrain,Ytrain);
8: γ ← sample from Beta distribution Beta(α, α);
9: for i = 0, . . . ,N train do

10: z̃train
i ← γztrain

i + (1 − γ) z̃train
i ;

11: ỹtrain
i ← ytrain

i | ỹtrain
i ;

12: end for
13: P← classifier(projection1(Z));
14: ePtrain ← classifier(projection2(eZtrain

));
15: Use the training set to update model parameters by

minimizing L;
16: end for

Fig. 5. Comparison of two common GNN structures and our double-
parallel structure of the MMGNN. (a) Series structure. (b) Parallel structure.
(c) Double-parallel structure.

parallel structure in Fig. 5(b) obtains different types of infor-
mation in graphs by parallelizing multiple GNNs. Unlike
GNNs with series stacked layers [33], [35] and GNNs with
multiple filters in parallel [19], [20], our novel double-parallel
structure in Fig. 5(c) decomposes the designed multiorder
multiscale bandpass filters into the preprocessing part and the
training part, so that the number of parallel layers L4 can
be smaller than L2, which can reduce computational cost and
be beneficial for large-scale graph training. Meanwhile, most
preprocessing methods [28], [51] such as random walk, adding
distance coding, usually extract general explicit information
from the spatial domain, while our preprocessing method uses
bandpass filters with a good inductive bias to directly extract
multiorder implicit information from the spectral domain.

In terms of highlights, our multiorder multiscale bandpass
filters can fully mine high-frequency signals of different scales
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TABLE II
STATISTICS OF THE REAL-WORLD DATASETS

in the graph to improve the performance of node anomaly
detection. The proposed OR-gate mixup performs data aug-
mentation in the spectral space without adding additional
views, avoids the risk of classification boundary blur, improves
model generalization, and reduces overfitting risk.

VI. EXPERIMENT

In this section, we comprehensively evaluate the perfor-
mance of our proposed MMGNN on four public real-world
datasets and conduct the following experiments and analysis:
1) the effectiveness of the MMGNN for node anomaly detec-
tion compared with other state-of-the-art methods (Section
VI-E); 2) the training speed of the MMGNN compared to other
methods on large-scale graphs (Section VI-F); 3) ablation
study of multiorder multiscale bandpass filters and OR-gate
mixup of the MMGNN (Section VI-G); 4) the benefits of
multiorder bandpass filters for node anomaly detection and
the harmfulness of multiorder low-pass filters (Section VI-H);
and 5) parameter sensitivity analysis of the OR-gate mixup
(Section VI-I).

A. Datasets

We conduct experiments on four public real-world datasets.
The dataset’s statistics are summarized in Table II. The het-
erophily degree of a graph G can be defined as hetero(G) =P

(i, j)∈E I{yi , y j}/|E |, where |E | is the total number of edges
and I is an indicator function.

1) Amazon: Amazon [52] is a spam review dataset that
includes product reviews under the Musical Instrument
category. The goal is to find anomalous users who paid
under the Musical Instrument category on Amazon.com
but write fake product reviews. The graph contains three
types of edges: U-P-U (users who have reviewed at least
one same product), U-S-U (users who have reviewed
at least one product with the same star rating within a
week), and U-V-U (users who rank in the top 5% of the
similarity rankings in mutual reviews).

2) YelpChi: YelpChi [53] is a spam review dataset that
contains hotel and restaurant reviews filtered and rec-
ommended by Yelp. The goal is to find anomalous
reviews that unfairly promote or demote certain products
or businesses on Yelp.com. The graph contains three
types of edges: R-U-R (reviews posted by the same
user), R-S-R (reviews with the same star rating for the
same product), and R-T-R (reviews posted for the same
product in the same month).

3) T-Finance: T-Finance [19] is a transaction dataset aimed
at discovering anomalous accounts in the trading net-
work. The nodes are unique anonymized accounts with

10-D features related to registration date, logging activ-
ities, and interaction frequency. The edges in the graph
represent two accounts with transaction records. Nodes
belonging to categories such as fraud, money laundering,
and online gambling will be labeled as anomalous by
human experts.

4) T-Social: T-Social [19] is a transaction dataset aimed
at discovering anomalous accounts in the trading net-
work. It has the same node annotations and features as
T-Finance. The edge connections between nodes indicate
that they have maintained friendship for more than
3 months. The scale of T-Social is 100 times larger than
that of Amazon and YelpChi.

B. Baselines

We compare our proposed MMGNN with two classes of
baselines: 1) general GNN methods, including GCN [33],
ChebyNet [32], GAT [35], GIN [54], GraphSAGE [36], and
GWNN [55] and 2) state-of-the-art graph-based anomaly
detection methods, including GraphConsis [7], CAREGNN
[12], PC-GNN [13], AMNet [20], GDN [14], GHRN [15],
and BWGNN [19].

1) GCN: It is a spectral-based graph convolutional network
that uses a first-order approximation of localized spectral
filters to learn node embedding graphs.

2) ChebyNet: It is a spectral-based graph convolutional
network that restricts the convolutional kernel to a
Chebyshev polynomial.

3) GAT: It is a GNN based on an attention mechanism,
which adaptively aggregates neighborhood features by
learning edge weights to learn node embeddings.

4) GIN: Inspired by the Weisfeiler–Lehman (WL) graph
isomorphism test, GIN models injective function by
designing aggregation patterns with sufficient expressive
power. The expressive power of GIN is comparable to
the WL test.

5) GraphSAGE: GraphSAGE first uses the connection
information between nodes to sample a fixed number
of neighbors and then aggregates neighborhood infor-
mation through multilayer aggregation functions.

6) GWNN: It is a spectral GNN that uses heat kernels to
perform graph wavelet transform.

7) GraphConsis: It is a heterogeneous GNN used to tackle
context, feature, and relation inconsistency problems in
graph anomaly detection.

8) CAREGNN: It is a camouflage-resistant GNN that
enhances the aggregation process with three unique
modules against camouflages and reinforcement learn-
ing.

9) PC-GNN: It is an imbalanced learning method based on
the GNN, which solves the class imbalance problem in
graph-based fraud detection via resampling.

10) AMNet: It is a spectral GNN designed to adaptively cap-
ture low-frequency and high-frequency signals through
stacking multiple BernNets.

11) GDN: It is a graph decomposition network that disentan-
gles node features into class and surrounding features,
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TABLE III
F1-MACRO, AUC, AUPRC, AND REC@K OF ALL COMPARED METHODS. THE BEST PERFORMANCE IN EACH DATASET IS HIGHLIGHTED IN BOLD

effectively identifying anomaly features invariant to het-
erophily shift and capturing the local homophily of
normals.

12) GHRN: It is an approach that addresses the heterophily
issue in the spectral domain of graph anomaly detection
by pruning interclass edges to emphasize and delineate
the graph’s high-frequency components.

13) BWGNN: It is a spectral GNN based on graph
wavelet transform, which uses tailored spectral filters
for node anomaly detection to address the “right-shift”
phenomenon.

C. Metrics

According to existing anomaly detection benchmarks [56],
[57], [58], we select F1-macro, area under the receiver operat-
ing characteristic curve (AUC), area under the precision–recall
curve (AUPRC), and the recall score within top-k predictions
(Rec@K) as performance metrics. We set k as the number of
anomalies within the test set. F1-macro is the unweighted aver-
age of the F1-score of the two classes, ignoring the imbalanced
ratio between normal and abnormal labels. AUC primarily
focuses on overall performance and is not sensitive to top-k
predictions, Rec@K only cares about top-k performance, and
AUPRC strikes a balance between the two.

D. Implementation Details

For GWNN, GraphConsis, CAREGNN, and PC-GNN, we
refer to [58] and implement fast algorithms using DGL (Deep
Graph Library). For the rest of the baselines, we use the
DGL official library or the code provided by the original
article. For equal comparisons, we use the homo version of
all baselines, which merges all edge types into a homograph.
The heterogeneous graph version of our proposed MMGNN
can be implemented relatively and is left for further research
in the future. All baselines use the Adam optimizer to train
100 epochs with a learning rate of 0.01, and the remaining
hyperparameters are set according to the values suggested by
the corresponding papers. Our proposed MMGNN is imple-
mented using PyTorch and DGL. All datasets are trained
using the Adam optimizer with a learning rate of 0.01, the
dimension h for hidden states is set to 64, and the multiplicand
filter order C is set to 2. The epochs of Amazon are set

to 90, the epochs of YelpChi and T-Social are set to 150,
and the epochs of T-Finance are set to 200. We save the
model with the best F1-macro in the validation set and finally
calculate the values of all metrics for the best model in the test
set. The training ratio is 40%, while the remaining data is split
by 1:2 for validation and testing. For all methods, we report
the mean and standard deviation of ten runs for Amazon and
YelpChi, and for T-Finance and T-Social, we report 5 runs. We
implement Amazon, YelpChi, and T-Finance on one NVIDIA
RTX 2080Ti and implement T-Social on an Intel Xeon Silver
4214 CPU (T-Social is too large to fit into GPU).

E. Performance Comparison

Table III reports the performance of all compared meth-
ods. Overall, our proposed MMGNN consistently outperforms
other baselines in all datasets. Specifically, compared with the
best methods, on Amazon, YelpChi, T-Finance, T-Social, and
F1-macro increased by 0.33%, 2.87%, 1.05%, 11.19%, AUC
increased by 0.50%, 0.85%, 0.89%, 3.62%, AUPRC increased
by 0.93%, 5.87%, 2.79%, 25.70%, and Rec@K increased by
0.63%, 4.89%, 2.31%, 20.29%, respectively. It can be roughly
seen that as the scale of the graph increases, the performance
improvement of the MMGNN is greater. Specifically, the GCN
performs very poorly on Amazon and YelpChi because it
is equivalent to a low-pass filter and tends to enhance low-
frequency signals while suppressing high-frequency signals.
The GCN has a better performance on T-Finance, mainly
because the heterophily degree of T-Finance is smaller. The
heterophily degrees of all datasets are shown in Table II. The
signals in the graph with high heterophily degrees are biased
toward the high frequency, while those with low heterophily
degrees are biased toward the low frequency. Therefore, the
low-pass GCN performs not badly on T-Finance. The better
performance of the GCN on T-Social with a high heterophily
degree may be due to the smaller average edge connections
of each node. When aggregating neighborhood information,
abnormal node features are not easily masked by neighborhood
features. Compared to the GCN, ChebyNet performs better
on almost all datasets because its learnable Chebyshev filter
can serve as a bandpass filter. GAT, GIN, and GraphSAGE
perform poorly on some datasets because they are designed
based on dynamic learning of connection weights between
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TABLE IV

COMPARISON OF TRAINING TIME BETWEEN STATE-OF-THE-ART
METHODS AND THE MMGNN ON T-SOCIAL

nodes or based on graph isomorphism tests and can only learn
general feature representations. Although GWNN is designed
based on graph wavelet transform, the heat kernel filters it uses
are still essentially low-pass, resulting in poor performance.

GraphConsis, CAREGNN, and PC-GNN are methods
designed for node anomaly detection, but they are designed
from the perspectives of edge relationship learning. Their per-
formance on some datasets is worse than that of general GNN
methods. ChebyNet, which can be equivalent to a bandpass
filter, performs even better than them. AMNet, GDN, and
GHRN are state-of-the-art node anomaly detection methods
that generally demonstrate better performance than general
GNNs, but require more training time. The GDN needs to
be trained on T-Social for more than 12 days (so the results
are not shown), which is unacceptable.

The BWGNN is a state-of-the-art method based on bandpass
filters. It uses the same-order bandpass filters and performs
well on all datasets, which further demonstrates the superiority
of low-pass filters in node anomaly detection. Our MMGNN
achieves the best results on all datasets. For T-Social, the
BWGNN has achieved good performance by using filters
of C = 5 for training. However, our MMGNN decomposes
the designed multiorder multiscale bandpass filters into the
preprocessing part and the training part through the double-
parallel structure, only needs to train second-order filters with
C = 2, and the model training computational cost is lower
(comparison experiments of training time on large-scale graphs
are shown in Section VI-F). The MMGNN achieved over 10%
performance improvement on F1-macro, which proves that it
is not enough for the BWGNN to use same-order bandpass
filters that treat low- and high-frequency signals equally. The
signals in graphs have multiorder multiscale characteristics
and are more biased toward the high frequency. Our proposed
MMGNN equipped with multiorder multiscale bandpass filters
can better learn the difference between abnormal and normal
features, thereby significantly improving node anomaly detec-
tion performance.

F. Training Time on Large-Scale Graphs

For our proposed MMGNN, the complexity is O(C|E |),
since filters are polynomial functions that can be computed

recursively [32], where C is the training filter order and |E |
is the number of edges. The complexity of the BWGNN and
MMGNN is the same. To analyze the training speed of the
MMGNN on large-scale graphs, we compare the training time
of the AMNet, GDN, GHRN, BGWNN, and MMGNN on
T-Social. The results are shown in Table IV. The C of the
training part in our MMGNN is set to 2, and the learning rate
of all compared methods is set to 0.01. They are implemented
on an Xeon Silver 4214 CPU, and the mean and standard
deviation of five runs are reported.

The results show that when epochs are 100 and h is 10, the
MMGNN has the fastest training speed among all methods
and is 87.40% faster than the BWGNN, achieving better
performance. The performance improvement is due to the
multiorder multiscale bandpass filters we designed, and the
improvement in training speed is due to our construction of
the double-parallel structure to decompose high-order filters
into the preprocessing part and the training part, effectively
reducing the computational cost during model training. When
epochs are 100 and h is 64, the performance of the MMGNN
continues to improve, while the compared methods have no
obvious performance improvement. Even under the settings of
epochs are 100 and h is 10, the estimated training time of the
GDN exceeds 12 days, such training time is unacceptable for
efficient training and real-time inference on large-scale graphs.

Overall, we believe that our proposed MMGNN can provide
new inspiration for designing computational acceleration algo-
rithms on large-scale graphs. In practical application scenarios,
efficient training and real-time inference are crucial, especially
for large-scale graphs. Previous methods such as GraphSAGE
[36] often cut edge connections through fixed sampling to
reduce computational cost. However, for a complete graph,
the original edge connections cannot be arbitrarily changed,
as slight perturbations to the graph may change the signal
distribution of the entire graph, which is detrimental to node-
level classification tasks such as node anomaly detection.
The difference is that our proposed MMGNN performs a
lightweight design of multiorder multiscale bandpass filters
by constructing the double-parallel structure, without changing
the topology of the original graph. Performing OR-gate mixup
in the spectral space does not add additional views, further
avoiding additional computational cost.

G. Ablation Study

To further analyze the effectiveness of the MMGNN,
we perform an ablation study, and the results are shown
in Table V, where MMF represents multiorder multiscale
bandpass filters and OM represents OR-gate mixup. The
results show that whether it is removing multiorder multiscale
bandpass filters [i.e., removing the multiplier filters in the
preprocessing part and retaining the multiplicand filters in
the training part, which is equivalent to using the same-order
bandpass filters in Fig. 2(b)] or removing OR-gate mixup,
the performance of the MMGNN will decrease while using
both multiorder multiscale bandpass filters and OR-gate mixup
shows the best performance on all datasets. Multiorder mul-
tiscale bandpass filters and OR-gate mixup play an important
role in the MMGNN. Multiorder multiscale bandpass filters are
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TABLE V

ABLATION STUDY OF THE MMGNN ON ALL DATASETS

Fig. 6. When C = 2. (a) Two multiplier filters, which are second-order and fourth-order, respectively. (b) Vanilla Beta filter equivalent to second-order.
(c) Equivalent fourth-order superimposed filter. (d) Equivalent sixth-order superimposed filter. (e) Multiorder low-pass filters.

TABLE VI

IMPACT OF FILTERS PROPERTIES ON NODE ANOMALY DETECTION

specifically designed to mine multiscale high-frequency sig-
nals in the graph, thus improving the ability of the MMGNN
to distinguish between abnormal and normal nodes. OR-gate
mixup improves the ability of the MMGNN to detect difficult
abnormal samples by performing feature mixup and label OR-
gate mixup in the spectral space after parallel filtering. When
the MMGNN removes multiorder multiscale bandpass filters,
only the same-order bandpass filters are used for training.
Although they can also mine high-frequency signals in the
graph, the same-order bandpass filters treat low- and high-
frequency signals at the same scale without differential mining.
There is still a risk of remixing low- and high-frequency sig-
nals during model training, resulting in poor performance. The
multiorder multiscale bandpass filters we designed not only
overcome the shortcoming of low-pass filters that suppress
high-frequency signals but also the shortcoming of same-order
bandpass filters that treat low- and high-frequency signals
equally, resulting in better performance.

Overall, although reasonable graph data augmentation
methods can improve the performance of the model, the
improvement is relatively small due to the quality of the
node feature representations learned by the model. Designing
specific spectral filters with good properties for node anomaly

detection is crucial, as it directly affects the distinguishability
of node feature representations learned by the model and can
indirectly improve the effectiveness of other modules such
as graph data augmentation and graph contrastive learning,
thereby achieving the effect of mutual cooperation between
model modules to improve performance.

H. Harmfulness of Multiorder Low-Pass Filters

In this part, we verify the benefits of multiorder bandpass
filters for node anomaly detection, as well as the harmfulness
of multiorder low-pass filters and the shortcomings of one
single filter. The impact of filter properties on node anomaly
detection is shown in Table VI. To construct multiorder low-
pass filters, we remove the multiorder multiscale bandpass
filters in the proposed MMGNN and then use the same
multiplication method (in Section IV-A) to use the vanilla
Beta filters (C = 2) g0(λ) and g1(λ) to construct two low-pass
multiplier filters g0(λ) and g01(λ), where g01(λ) = g0(λ) ·g1(λ),
as shown in Fig. 6(a). They are placed in the preprocess-
ing part. For filters in the training part, we only use g0(λ)
of the vanilla Beta filters (C = 2) as a multiplicand fil-
ter, as shown in Fig. 6(b). Two high-order low-pass filters
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Fig. 7. Parameter sensitivity of α of the OR-gate mixup on all datasets. (a)–(d) F1-macro metric changes on Amazon, YelpChi, T-Finance, and T-Social
datasets, respectively. (e)–(h) AUC metric changes on Amazon, YelpChi, T-Finance, and T-Social datasets, respectively.

g00(λ) = g0(λ) · g0(λ) and g001(λ) = g0(λ) · g01(λ) after super-
position are shown in Fig. 6(c) and (d), respectively. Finally,
the equivalent multiorder low-pass filters constructed through
the double-parallel structure are shown in Fig. 6(e). The model
using multiorder low-pass filters is named MMGNN-MLow.
We also constructed MMGNN variants using only one-single
filter [low-pass, bandpass, or high-pass, corresponding to
g0(λ), g1(λ), or g2(λ) in Fig. 2(b)], named MMGNN-1Low,
MMGNN-1Mid, and MMGNN-1High, respectively.

Table VI shows that the performance of MMGNN-MLow
is poor and lower than the BWGNN using the same-
order bandpass filters. MMGNN-1Low, MMGNN-1Mid, and
MMGNN-1High only use one single filter and focus on
partial frequency signals, resulting in poor performance,
but better than MMGNN-Mlow. This proves that multiorder
low-pass filters are harmful to node anomaly detection, as
they repeatedly mine low-frequency signals without focus-
ing on high-frequency signals, which weakens the ability of
MMGNN-MLow to distinguish between abnormal and normal
features. On the contrary, the multiorder multiscale bandpass
filters in our MMGNN are beneficial because they focus
more on high-frequency signals at multiscale, improving the
distinguishability of node features. The performance difference
between MMGNN-MLow and MMGNN on YelpChi and
T-Social is greater than that on Amazon and T-Finance, which
is related to the heterophily degree of different datasets shown
in Table II. The signals in the graph with high heterophily
degrees are biased toward the high frequency, while those with
low heterophily degrees are biased toward the low frequency.
The heterophily degrees of Amazon and T-Finance are small,
with 0.0456 and 0.0292, respectively, while YelpChi and
T-Social are large, reaching 0.2268 and 0.3761, respec-
tively. The greater the heterophily degree of the graph, the
more important the high-frequency signals in the graph, and

the benefits of beyond low-pass filters are more obvious.
Therefore, in graphs with high heterophily degrees, the per-
formance of models using multiorder bandpass filters and
multiorder low-pass filters shows significant differences, while
with low heterophily degrees, the performance differences are
smaller.

In summary, the results show that multiorder low-pass filters
ignore high-frequency signals that weaken node anomaly
detection performance. One-single filter only focuses on partial
frequency signals, and its performance is also poor. The
multiorder multiscale bandpass filters we designed can obtain
better performance by fully mining high-frequency signals at
multiscale.

I. Parameter Sensitivity

In this part, we investigate the parameter sensitivity of our
proposed MMGNN. It is worth noting that the parameters of
the MMGNN, such as learning rate, hidden states dimension
h, and Beta distribution parameter α of OR-gate mixup are
the same for all datasets and have not been carefully adjusted.
Here, we mainly analyze the sensitivity of the parameter α,
which affects the shape of the Beta distribution probability
density curve and then affects the mixup of two samples. The
results are shown in Fig. 7. Overall, on all datasets, there is
little difference in the performance of the MMGNN when α
takes different values. When α is small, the sample mixup will
be more biased toward one of the samples (e.g., γ = 0.9 or
γ = 0.1), and when α is large, the sample mixup will be more
toward uniform mixup (e.g., γ = 0.5). Experimental results
show that the MMGNN is not sensitive to parameter α. We
set α = 2.0 for all datasets so that the sample mixup tends
to be uniform. It can fully construct new samples that are not
similar to the two mixup samples, reducing excessive memory
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of similar samples during model training, thus reducing the
risk of overfitting.

VII. CONCLUSION

Graph node anomaly detection is a task with research
significance and application value. In this article, we propose
OR-Gate MMGNN from the spectral domain. Specifically, by
utilizing the superposition and decomposition of polynomial
spectral filters, we construct multiorder multiscale bandpass
filters through the double-parallel structure with a prepro-
cessing part and a training part, which can effectively mine
high-frequency signals in the graph and reduce computational
cost. Finally, we perform OR-gate mixup data augmenta-
tion in the spectral space to avoid adding additional views
and improve model generalization. Experimental results on
four real-world datasets demonstrate the effectiveness of the
MMGNN against other state-of-the-art methods.

In the future, we will further research the following aspects.
1) Incorporating uncertainty quantification to measure the

credibility of data augmentation samples, as some of
the constructed new samples may be harmful to model
training.

2) Due to the advantage of multiorder multiscale bandpass
filters for distinguishable feature representation learning,
features can be decoupled in spectral space and gen-
erative models can be used to generate more realistic
abnormal samples, further alleviating the problem of rare
abnormal patterns.
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