
2616 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 67, NO. 11, NOVEMBER 2018

Sparse Time-Frequency Representation for Incipient
Fault Diagnosis of Wind Turbine Drive Train
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Abstract— As wind power attracts increasing attention and
wind turbines (WTs) capacity expands, fault diagnosis of WT
is playing a more and more important role in improving relia-
bility, minimizing down time, reducing maintenance costs, and
providing reliable power generation. In this paper, a novel sparse
time-frequency representation (STFR) method is proposed to
increase the diagnostic precision of incipient faults. The proposed
method can be applied once the condition is detected as abnormal
according to the VDI3834 vibration threshold standard in WT
fault diagnosis systems. The proposed method is a novel signal
representation method based on the sparse representation theory
and Wigner–Ville distribution (WVD), which can overcome the
limitations of traditional basis functions expansion and time-
frequency analysis methods. In this method, a union of redundant
dictionary (URD) is constructed on the basis of the underlying
prior information of the oscillate characteristics with multicom-
ponent coupling effect and different morphological waveforms.
Therefore, the vibration signal can be sparsely represented over
the URD. Then, the sparse coefficients and corresponding atoms
can be obtained by solving the basis pursuit denoising problem
via alternating direction method of multipliers. Based on the
combination of the WVD of each atom and corresponding sparse
coefficient, the time-frequency distribution of the vibration signal
can be obtained. To verify the effectiveness of the STFR method,
a simulation and two field tests in the wind farm are performed.
The comparison results with state-of-the-art methods illustrate
the superiority and robustness of the proposed method in the
engineering applications.

Index Terms— Fault diagnosis, sparse representation, time-
frequency representation, union of redundant dictionary (URD),
wind turbine (WT).

I. INTRODUCTION

S INCE the world energy crisis in the 1970s, the fast
consumption of conventional energy sources and today’s

continuously increasing energy demand have necessitated
intensive research for more efficient and green energy sources.
Alternative energy resources such as wind, solar, ocean
thermal, and tidal energy have attracted the increasing attention
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to generate power on a large scale [1]. Compared with fossil
fuels, they are promised well to be the practical resources
for modern industrial society due to their high energy density,
transportability, versatility, and reasonable cost [2]. Among the
main options being studied, wind farms and their constituent
turbines are becoming larger and larger because of its features
of environmental friendly energy, immense resources, tech-
nology maturity, good infrastructure and relative cost competi-
tiveness, and increasing importance in the recent years [3], [4].

The worldwide total installed capacity of wind turbine (WT)
from 2001 to 2014 is shown in Fig. 1(a) [5]. Meanwhile,
the dramatic growth of total installation and individual
capacity makes the failures of WTs costly or even unaccept-
able. Up to May 31, 2015, the statistics of WT accidents
of the past two decades in Caithness windfarm is shown
in Fig. 1(b). It can be found from the recorded data that the
occurrence of accident is increasing with the growth of WTs.
The failures of WTs cause not only unexpected problems of
the power system because of sudden absence of a large amount
of power but also high cost for repairing and maintenance,
especially for those large and remote located WTs, which
led to reduction in energy production [6]. Therefore, fault
diagnosis has attracted increasing attention in WT applications,
which is considered as an efficient way to ensure the safe
running of WTs, prevent costly system maintenances, and
increase productivity [7].

A WT is a complex electromechanical system with hundreds
of components and subsystems [8], such as gearbox, generator,
bearings, rotor hub, blades, shafts, etc. Each component of
the WT has its own failure modes and contribution to the
downtime. Fig. 2 shows the failure rate of major WT subsys-
tems and the average downtime caused by the failures of these
subsystems from two large surveys of onshore European WTs
over 13 years [9]. From Fig. 2, it can be seen that the higher
costs related to field repair and service of WTs are accredited
to the drive train [10], [11]. The main structure and subsystems
of a doubly fed induction generator (DFIG) WT are shown
in Fig. 3. The drive train in a WT mainly consists of main
shaft, gearbox, mechanical brake, and generator, as shown
in Fig. 3. Therefore, in order to improve security, minimize
down time, lower the frequency of sudden breakdowns, and
provide reliable power generation, fault diagnosis of WT, espe-
cially the drive train, has become essential in WT applications
and wind energy promotion [12].

The most important components of the fault diagnosis
system are the signal acquisition and processing methods [13].
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Fig. 1. (a) Worldwide WT total installed capacity from 2001 to 2014. (b) Summary of WT accidents in Caithness windfarm from 1996 to 2014.

Fig. 2. Failure rate of major WT subsystems and corresponding downtime of onshore European WTs over 13 years.

Fig. 3. Typical DFIG WT with main subsystems.

Vibration signal, strain, lubrication parameters, temperature,
and acoustic emission signal are commonly used for incipient
fault diagnosis [14]. They can be acquired via corresponding
sensors installed in different positions of the WT. However,
the measured signals are always complex and nonstationary
with a large amount of background noise, and the useful
information is usually too weak to be distinguished. Numerous
techniques and algorithms have been proposed to deal with

this problem [15], including time-domain analysis, frequency
analysis, and time–frequency analysis, such as Fourier trans-
form [16], wavelet transform [17], [18], empirical mode
decomposition [19]–[21], and spectral kurtosis [22]. These
methods can partition the time-frequency position, design
innumerable linear time–frequency representation methods
according to the requirements, select the best band, and
discover the presence of non-Gaussian signals. However, there
are some drawbacks of traditional methods which are based
on basis functions, such as energy leak, monotonous form, and
information scatter. Recently, sparse representation of signals
over various parameterized basis functions library, called the
redundant dictionary, is proposed to express the complicate
signals more effectively [23]–[25]. The philosophy of sparse
representation theory is to concentrate the energy of feature
information on a few elements and model signals as sparse
linear combinations of atoms from a dictionary [26], [27].
There are mainly two well-known methods for sparse repre-
sentation: matching pursuit algorithm which is proposed by
Mallat and Zhang [28] and basis pursuit (BP) algorithm which
is proposed by Donoho [29], [30]. Over the past several
years, it has received increasing attention in signal and image
processing.
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In an actual engineering application, the above-mentioned
state-of-the-art signal analysis techniques mainly suffer from
four drawbacks: first, the signal processing effectiveness will
often be weakened by the strong harmonic interferences and
input noise; second, due the coupling effect, it is difficult for
the traditional methods to distinguish different faults, even
health status; third, the analysis results are directly influenced
by the base functions because the signals can be analyzed very
well only on the condition that the time-frequency structure of
signal and base function are similar, and it is often difficulty to
choose base functions properly in practice; last but not least,
random fluctuation of wind speed will lead to WT unstable
operation, which will influence the performance of diagnosis
methods.

To avoid these problems, a sparse time-frequency represen-
tation (STFR) method is proposed in this paper based on sparse
representation theory and the principle of time-frequency
analysis. First, the evolution of the dictionary depends on how
similar its base functions and the signal characteristics are,
which will influence the effect of sparse representation signif-
icantly. In this method, a union of redundant dictionary (URD),
which consists of two subdictionaries, is constructed based on
the adequate use of the prior information on signal oscillation
characteristics. Therefore, this URD can implement sparse
representation of different morphological components when
the WT drive train has multiple faults. Since the proposed
method in this paper constructed a URD for different vibration
components based on the vibration mechanism of WT driven
train system, the proposed method is more pertinent and shows
better resolutions. Then, the sparse coefficients of the signal
after noise reduction can be obtained by solving the BP
denoising (BPDN) model. The minimization problem of l1
norm in BPDN model can be transformed into a convex opti-
mization formulation that could be dealt with the alternating
direction method of multipliers (ADMM) [31]. In this paper,
the vibration signal is used to analyze because it is considered
as one of the optimal signals, and vibration monitoring can
be found in almost all commercially available WT due to
its widespread distribution and accuracy [32]. After solving
the sparse model, original signal can be represented with
the atoms and corresponding coefficients. Then, Wigner–Ville
distribution (WVD) is used to obtain the time–frequency
distribution of each atom due to their superiority in nonsta-
tionary signal processing. Finally, time–frequency distribution
of original vibration signal after denoising can be represented
via combining the time–frequency distribution of each atom
and corresponding coefficient.

The STFR method has four main advantages: first, heavy
background noise can be alleviated according to the denoising
algorithm; second, compared with traditional basis function
expansion methods, it can provide a better approximation
to the complex signal with multicomponents coupling effect;
third, the cross-term problem of the WVD can be solved by
STFR; finally, it can implement the visualization of WT system
condition and make the incipient fault diagnosis process more
intuitive.

This paper is organized as follows. In Section II, the oscil-
lation characteristics of WT drive train vibration signal are

Fig. 4. Vibration signal of a normal drive train.

provided. Section III provides a detailed description of the
proposed STFR method and the construction of the URD.
The simulation applications are represented in Section IV.
In Section V, the vibration signal analysis of two applications
in WT drive trains are performed to illustrate the effectiveness
of the STFR method. Finally, conclusion and future work of
the research are drawn in Section VI.

II. VIBRATION SIGNAL MODEL OF WT DRIVE TRAIN

Vibration data is recognized as the best parameter in a
WT for incipient fault diagnosis during the operation, because
it can reflect operational condition and faults properties
rapidly, accurately, and comprehensively. There are mainly
four components in the drive train vibration signal, which
couple with each other and make the diagnosis even more
difficult.

A. Harmonic Component

Even in a normal WT drive train, vibration will still exist
during the operation due to the fluctuation of rotating system
stiffness. The waveform of vibration signal x(t) can be approx-
imately presented as the sine wave as shown in Fig. 4.

Therefore, this component vibration signal can be
described as

yn(t) =
M∑

m=0

xm cos(2πm fzt + φm) (1)

where xm and φm are the amplitude and phase of the mth stiff-
ness fluctuation frequency component, respectively, and fz is
the stiffness fluctuation frequency. Specifically, stiffness fluctu-
ation frequency represents the meshing frequency, ball passing
frequency, and rotating frequency, respectively, in gearbox,
shaft, and generator.

This harmonic component of vibration will always exist
in either health or abnormal condition with different vibration
amplitude. Therefore, it makes sense to diagnose fault based
on the meshing frequency and its harmonics. However, this is
not enough because the vibration signal can be influenced by
faults on many aspects, such as steady modulation and impact
modulation, which will be illustrated in Section II-B.

B. Steady Modulation Component

When distributed fault occurs in a WT drive train, the vibra-
tion waveform will be modulated steadily due to the change of
rotating vibration amplitude as shown in Fig. 5, which consists
of harmonic component and steady modulation component.

The steady modulation model can be described as

ys(t) =
M∑

m=0

xmam(t) cos(2πm fzt + φm) (2)
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Fig. 5. Vibration waveform of a distributed fault.

Fig. 6. Vibration waveform of a localized fault.

where am(t) is the mth harmonic component of the amplitude
modulation, which can be modeled as

am(t) =
N∑

k=0

Am,k cos(2πk fr t + αm,k) (3)

where Am,k and αm,k are the kth order amplitude and phase
of the mth harmonic component of amplitude modulation,
respectively, and fr is the rotational frequency of the faulty
unit. The carrier frequencies of steady modulation vibration
signal are stiffness fluctuation frequency fz and its harmonics,
as well as modulation side-bands of rotational frequency fr

and its harmonics.

C. Pulsing Modulation Component

In a drive train, when the rotating component passing
through the defect area, the localized faults such as pitting,
spall, or tooth breakage will generate impact force. The vibra-
tion signal caused by localized faults is a damped oscilla-
tion signal for which the amplitude attenuates exponentially,
as shown in Fig. 6, which consists of the pulsing modulation
component and harmonic component.

The model of pulsing modulation component can be
described as

x p(t) = A p exp(−2πζ/
√
(1 − ζ 2) fd t) cos(2π fd t) (4)

where A p is the amplitude. ζ is the relative damping ratio. fd

is the damped natural frequency.
During the operation of a WT, rotating unit will pass the

defect continuously. As a result, pulsing modulation compo-
nent will occur periodically, which can be described as

yp(t) =
∞∑

k=−∞
x p(t − kTn) (5)

where Tn is the period of impacts and Tn = 1/ fn if there is
only one defect.

Therefore, when the WT system is faulty, both the steady
frequency modulation and the impact frequency modulation
will exist in vibration signals. Even when the WT is normal,
many factors will contribute to distributed faults, such as
profile error, misalignment, double-elastic supporting, etc.
Therefore, steady modulation component will exist in either
healthy or faulty drive train.

D. Observed Vibration Signal

As a result of the combination of above-mentioned compo-
nents, the observed vibration signal of a WT drive train often
can be described as

s(t) = y(t)+ n(t) (6)

where n(t) is the noise. y(t) is the combination signal of each
components with fault information

y(t) = yn(t)+ ys(t)+ yp(t) (7)

where yn(t) is the harmonic component. ys(t) is the steady
modulation component. yp(t) is the pulsing modulation
component.

These vibration components are often distorted by relatively
strong noises, which may arise due to sensor imperfection,
poor running environment or communication errors, and so
on. As different components existing in the vibration signal
with strong background noise, the demodulation result solved
by the traditional method is always fn , which will lead to two
problems: first, it is hard to distinguish the working or faulty
condition; second, it can be easily confused with distributed
faults and localized faults. Furthermore, due to fluctuation of
wind speed, the unsteady operation makes fault diagnosis of
WT even more difficult.

Generally, the vibration signals of normal gearbox without
elastic support are composed of harmonic component and
noise. In this condition, for a gearbox with local fault, its
vibration signals will be composed of harmonic component,
pulsing modulation component, and noise. This will cause the
sideband in spectrum, and characteristic frequency in their
envelop spectrum, which is equal to the rotation frequency.
Therefore, traditionally, the envelop spectrum and frequency
spectrum are used to recognize the pulsing modulation compo-
nent. However, gearboxes in WTs are usually on elastic
support, which may cause the inherent misalignment, even
in a normal gearbox. As a result, the vibration signals of
gearboxes in WR are composed of harmonic component,
steady modulation component, and noise. These components
can also cause the sideband in spectrum and characteristic
frequency in envelop spectrum, which makes it more difficult
to diagnosis local fault in WT.

Therefore, it is necessary to work out a feature extraction
algorithm of noise, steady, and pulsing coupling modulation
components in nonstationary operation condition for WT
incipient fault diagnosis.

III. SPARSE TIME-FREQUENCY

REPRESENTATION METHOD

A. Basis Pursuit Denoising

The main idea of sparse representation is to replace the
basis function sets with over completed redundant function
sets, which are called the over completed dictionaries, and
then, trace the parameterized functions matched with the
signal structure features; finally, signal was represented as
a linear combination of few vectors which are called atoms
in the dictionary. Therefore, in sparse representation theory,
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Fig. 7. Waveforms of the atoms with (a) ξ = 0.05, f = 5, andτ = 0, (b) ξ = 0.1, f = 5, andτ = 0, (c) ξ = 0.05, f = 10, andτ = 0, and (d) ξ =
0.05, f = 5, andτ = 2.

the sparser the decomposition results, the more the similarity
between atoms and the nature of signal.

For the vibration signal in (7), it can be expressed as

y = Dx. (8)

Let M is the length of y and N is the length of x. Define
D is an M × N matrix, which is called the dictionary. Then,
the noisy vibration signal can be rewritten as

s = y + n = Dx + n. (9)

Sparse representation of the vibration signal y over the dictio-
nary can be equivalent to an optimization problem as follows:

arg min
x

‖x‖0 s.t. y = Dx (10)

where ‖ · ‖0 denotes the nonzero entries of a vector.
The problem in (10) is an NP-hard problem and cannot be
solved in a straightforward approach. BP algorithm, proposed
by Chen and Donoho, can solve the problem in (10) by
replacing with l1 norm ‖·‖1 as the sparseness metric function.
As a result, (10) can be transformed as

arg min
x

‖x‖1 s.t. y = Dx. (11)

For the noisy vibration signal s, an approximate solution can
be found by minimizing the cost function

arg min
x

‖s − Dx‖2
2 + λ‖x‖1. (12)

Parameter λ is the penalty factor, and should be chosen
depending on the operating condition, which is usually set
between 0 and 1. The larger it is, the more weight x is.
The problem in (12) is known as the BPDN problem. This
modification leads to the conversion of the optimization
problem. Because l1 norm is either a convex function or a
nonstrictly concave function, the result of (12) is able to sparse
represent the original signal. In this paper, ADMM method is
employed to solve (12).

B. Construction of the Union of Redundant Dictionary

In sparse decomposition method, the selection of atom
dictionary is important because the sparse expression result of
original signal is directly influenced by the dictionary. In order
to get a better performance, the dictionary should be matched
with signals inner structure as closely as possible. Therefore,
the signal will be represented with less atoms and the result
will be sparser. According to the vibration signal characteristic
of WT drive train in Section II, this paper adequately exploits

the prior information of faulty vibration signal, and constructs
a URD with two subdictionaries.

For harmonic component and steady modulation compo-
nent, the vibration signal is a series of harmonic or steady
modulation harmonic functions. The aim of sparse repre-
senting these two components is to find their frequencies.
Therefore, frequency dictionary, which takes frequency as
parameter variable, is more suitable. Fourier dictionary is a
typical frequency dictionary constructed by a collection of
trigonometric functions and is adapted as the first subdic-
tionary for these two components signal.

The atom gs of Fourier subdictionary is represented by
trigonometric function with parameter γ = ( f, ν). f is the
frequency parameter. ν ∈ {0, 1} is the phase parameter. When
ν = 0 or ν = 1, the waveform function is cosine or sine
function, respectively

gs( f, 0) = cos(2π f t)

gs( f, 1) = sin(2π f t). (13)

Let f = k/M . For cosine function, k = 0, 1, . . . ,M/2; for
sine function, k = 1, 2, . . . ,M/2 − 1.

For pulsing modulation component, the vibration signal
is a series of periodic impulse functions. Laplace wavelet,
which is the spiral attenuation wave in complex number space,
is very similar to free damping response function, and can
represent the true vibration state of faulty drive train satis-
factorily [33]. Furthermore, it has a clear physical meaning.
Therefore, the atom gp of the second subdictionary for pulsing
modulation component is defined as Laplace wavelet atoms
with the parameters of τ, f, andξ

gp(ξ, f, τ, t)

=

⎧
⎪⎨

⎪⎩
Ae

(
ξ√

1 − ξ2
)2π f (t−τ )

sin(2π(t − τ )), t ≥ τ ;
0, t < τ

(14)

where γ = (ξ, f, τ ) is the parameter vector. ξ is the damping
coefficient. f is the frequency of the atom. τ is the initial
moments of pulsing response. The waveform will decrease
faster as ξ increases with other parameter unaltered. When f
increases with other parameter unaltered, the waveform will
oscillate more rapidly. ξ and f vary from different atoms.
The waveform will be translated as τ changes. A is used
for atom function normalization. The waveforms vary from
different τ , f , and ξ , as shown in Fig. 7.
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The URD is composed of the atoms in Fourier subdictionary
gs and the atoms in Laplace wavelet subdictionary gp.

C. Time–Frequency Representation Based on Sparse
Representation and Wigner–Ville Distribution

After solving the convex optimization problem in (12) over
the constructed URD, the sparse coefficients x̂ can be obtained.
And the sum signal can be represented as

s(t) = Dx =
N∑

i=1

x̂i gi . (15)

Due to the nonstationary characteristic of WT vibration
signal, WVD, which is an important theoretical tool for
nonstationary signal, is employed for the atom time–frequency
distribution. As one of the most basic methods of Cohen
bilinear time–frequency distribution, the essence of WVD is
to distribute the signal energy in time–frequency plane. For
signal s, the WVD is defined as

Ws(t, f ) =
∫ ∞

−∞
s
(

t + τ

2

)
s∗ (

t − τ

2

)
e− j2π f t . (16)

Although WVD shows superb time–frequency concentration,
the essence of its distribution is not linear, i.e., the WVD of
the sum signal is not equal to the sum WVD of each signal.
Let s(t) = s1(t)+ s2(t)

Ws(t, f )

=
∫ ∞

−∞

[
s1

(
t + τ

2

)
+ s2

(
t + τ

2

)]
·
[
s∗

1

(
t − τ

2

)

+ s∗
2

(
t − τ

2

)]
×e− j2π f t =Ws1(t, f )+Ws2(t, f )

+ 2Re[Ws1,s2(t, f )]. (17)

The term 2Re[Ws1,s2(t, f )] is the mutual WVD, which is
an introduced interference and known as the cross term. It is
obvious that the more the components, the more the cross
terms. For a signal containing n components, there will be
C2

n cross terms. For the sparse represented signal s in (15),
the WVD will be

WVDs(t, f ) =
N∑

i=1

WVDx̂i gi (t, f )

+
N∑

i=1

N∑

j=1, j �=i

Re[WVDx̂i gi ,x̂ j g j (t, f )]. (18)

The second term in (18) is the cross term, which can inter-
fere the time–frequency distribution greatly, and depress the
promotion of quadratic time–frequency distribution. Therefore,
in this paper, we proposed a time–frequency representation
method based on sparse representation and WVD. Unlike the
traditional kernel function methods to suppress cross terms,
the proposed method not only reduces the interfering cross
terms but also preserves the superb time–frequency concen-
tration of the WVD.

Each atom in the dictionary has its time–frequency charac-
teristics as shown in Fig. 8, and the WVD of the ith atom is
defined as

Watom(i)(t, f ) =
∫ ∞

−∞
g(i)

(
t + τ

2

)
g∗
(i)

(
t − τ

2

)
e− j2π f t . (19)

Fig. 8. STFR of each atom.

Then, the STFR of the whole signal s can be implemented
by integrating the time–frequency distribution characteristics
of the atoms with nonzero coefficients and corresponding
sparse coefficients

STFs =
N∑

i=1

x̂i Watom(i) (20)

where Watom(i) is the WVD of the i th atom.
The proposed method implements fault diagnosis by

observing if there is a fault characteristic frequency in time–
frequency representation. The computational burden of the
proposed method is mainly focused on solving BP algorithm.
The computation complexity is cN In(N), where c is the
number of atoms in dictionary and N is the number of points
in signal. Therefore, the calculating efficiency is too low to
implement real-time detection. In practical engineering, fault
diagnosis of WT mainly includes condition monitoring and
fault detection. Statistical indicators, such as rms and kurtosis,
are currently used for condition monitoring. If the statistical
indicators exceed the standard, then the proposed method can
be used for analysis and precise diagnosis. And the proposed
method can also be used for double-fed WT, but the parameters
of dictionary should to be adjusted.

IV. SIMULATION STUDY

To verify the effectiveness of the STFR method, a simu-
lation experiment is conducted. In this section, based on
the characteristics of the WT vibration signal, a compound
signal is constructed with three components and defined
as

y(t) = s1(t)+ s2(t)+ s3(t) (21)

where s1(t) is the pure sinusoid to simulate the power
frequency component, i.e., the first harmonic signal. s2(t)
is the steady modulation signal and s3(t) is the pulsing
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Fig. 9. Waveform of (a) harmonic component s1, (b) steady modulation
component s2, (c) pulsing modulation component s3, and (d) mixed signal y.

modulation signal. They are defined as

s1(t) = A1 sin(2π fz t)

s2(t) = A2[sin(2π fr t)+ sin(2π · 2 fr t)] ∗ s1(t)

s3(t) = X A3sp(t − T0 − [t/T ] × T ) (22)

where A1 = 0.2, A2 = 0.08, and A3 = 0.5 are the amplitudes
of s1(t), s2(t), and s3(t), respectively. fz = 500 Hz is the
parameter used to simulate the stiffness fluctuation frequency.
fr = 25 Hz is used to simulate the rotating frequency. T0 is
the start time of the pulse signal. T is the oscillating period
of sp(t ′). sp(t ′) is the oscillate damping function, which is
defined as

sp(t
′)

=

⎧
⎪⎪⎨

⎪⎪⎩

ex p

⎡

⎣

⎛

⎝− ξ1√(
1 − 2ξ2

1

)2π f1t ′
⎞

⎠ · sin(2π f1t ′)

⎤

⎦ , t ′ ≥ 0;

0, t ′ < 0.

(23)

Let T0 = 0.005 s and T = 0.02 s. ξ1 = 0.2 is the attenuation
factor. f1 = 500 Hz is the carrier frequency. The waveforms
of these three components and the whole signal are shown
in Fig. 9.

The Fourier subdictionary is constructed with parame-
ters f , which ranges from 0 to half of the maximum
sample frequency fs . In this simulation, fs = 5000 Hz.
The Laplace wavelet subdictionary is constructed with para-
meters τ ∈ [0 : 5/ fs : 0.2], ξ ∈ [0.1 : 0.01 : 0.3], and f =
500 Hz.

The STFR result of the compound signal is displayed
in Fig. 10. Wavelet transform is always an effective method
for signal analysis [34]. For the purpose of comparison,
the same simulation signal is analyzed by continuous wavelet
transform (CWT) with the Morlet. The CWT of a function
x(t) is expressed as

Wx (a, b;ψ) =
∫

x(t)ψa,b(t)dt, a > 0 (24)

Fig. 10. STFR of the mixed signal y.

Fig. 11. Time–frequency representation of y based on Morlet wavelet with
mother wavelet length of (a) 16 and (b) 256.

where the function family ψa,b(t) is generated by stretching
and translating the mother wavelet ψ(t) as follows:

ψa,b(t) = a1/2ψ

(
t − b

a

)
(25)

where a is the scale factor. b is the translational value.
The wavelet analysis results with the mother wavelet length
of 16 and 256 are shown in Fig. 11.

It can be seen in Fig. 10 that A, B, C, and D demonstrate
the periodic impact component with period of 0.04 s clearly.
Furthermore, 3 demonstrates the harmonic component. 1, 2, 4,
and 5 demonstrate the steady modulation component with
modulation frequency of 25 Hz, which can be seen easily and
matches with the constructed simulation signals accurately.
Fig. 11(a) shows the periodic impact components of A, B, C,
and D from the result of wavelet analysis when the wavelet
length is short. And from Fig. 11(b), the harmonic compo-
nent and steady modulation component can be found when
wavelet length is long, but it is not as clear as in Fig. 10.
However, in low-frequency band, the wavelet transform has
high frequency resolution, with low time resolution, vice versa.
Therefore, the analysis results are depending on the selection
of wavelet length. As a result, the periodic impact can be found
in Fig. 11(a) with high time resolution, while the harmonic
and steady modulation components are not shown. Similarly,
it can be found in Fig. 11(b), with high frequency resolution,
the impact component cannot be found due to the low time
resolution.

Totally with the actual situation, the simulation signal y is
added with noise component

s(t) = y(t)+ n(t) = s1(t)+ s2(t)+ s3(t)+ n(t) (26)

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on June 01,2022 at 09:52:06 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: STFR FOR INCIPIENT FAULT DIAGNOSIS OF WT DRIVE TRAIN 2623

Fig. 12. Waveform of (a) noise n(t) and (b) mixed simulated signal s.

Fig. 13. (a) Envelop spectrum of s1(t)+ s2(t)+ n(t) and (b) its spectrum.
(c) Envelop spectrum of s(t) and (d) its spectrum.

where n is the Gaussian white noise with zero mean and
0.15 standard deviation, as shown in Fig. 12(a). Fig. 12(b)
shows the total simulated signal s with noise.

In this simulation, the envelop spectrum and frequency
spectrum of s1(t) + s2(t) + n(t) and s are drawn in Fig. 13.
It can be seen that the sideband and characteristic frequency
can be seen in both the two simulated signals. Neither the
envelop spectrum nor the frequency spectrum can identify the
existence of pulsing modulation component s3.

The STFR result of signal s is displayed in Fig. 14.
The wavelet analysis results with the wavelet length of 16 and
256 are shown in Fig. 15.

As shown in Fig. 14, even in noisy environment, the periodic
impact component with period of 0.04 s still can be found,
as well as the harmonic and steady modulation components
with modulation frequency of 25 Hz. However, in Fig. 15(a),
only some cluttered impact can be found without regular
period due to the effect of noise. In Fig. 15(b), the harmonic
component and steady modulation component are still can be
seen unclearly. Therefore, the STFR method not only provides
a denoising algorithm for nonstationary complex signal with
multicomponent coupling effect but also eliminates the cross-
term interference of WVD.

To better illustrate the effectiveness of the proposed method,
the time–frequency concentration measurement (CM) of each
simulation is calculated as the numerical results. CM is the
proportion of time–frequency energy in R set and the total
time–frequency energy, which can reflect the accuracy of
feature extraction by the proposed method. The results are
shown in Table I.

Fig. 14. STFR of the mixed signal s.

Fig. 15. Time–frequency representation of s based on Morlet wavelet with
mother wavelet length of (a) 16 and (b) 256.

TABLE I

CM RESULTS OF THE TWO SIMULATIONS

Therefore, the proposed method performs better in feature
extraction, and shows excellent time–frequency concentration
ability.

V. ENGINEERING APPLICATIONS

To examine the performance of the STFR method, the appli-
cations to two field tests are performed for the WT drive train
incipient fault diagnosis.

A. STFR for Gearbox

In this section, a field test of WT gearbox was used to
prove the validity of the theoretical analysis and the ability
for incipient fault diagnosis. To further demonstrate the effec-
tiveness of the STFR method, the analysis result is compared
with the analysis results of wavelet transform and BP sparse
representation method.

This field test was performed in the WT of the
WD50/800 type, with rated wind speed of 14 m/s and power
of 750 kW. The diagnostic system concludes seven vibration
acceleration sensors, a proximity switch for the rotational
speed test, an offline data acquisition device, and a personal
computer [35]. There are one low-speed planetary stage and
two parallel stages in the gearbox, which has an overall ratio
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Fig. 16. (a) Overall view of WT. (b) Drivetrain configuration of the WT and
gearbox transmission layout.

TABLE II

SENSORS TYPES AND THE NAMES OF MEASUREMENT POINTS

TABLE III

BASIC KINEMATIC DATA OF THE GEARBOX UNDER CONSIDERATION

of 1:61.713. The drive train configuration and the transmission
layout of the gearbox are presented in Fig. 16. Points 1–7 in
Fig. 16(b) are the locations of vibration acceleration sensors
in the WT, and point 8 is the location of a laser displacement
sensor to measure the rotating speed. The sensors types
and the names of measure points are displayed in Table II.
Table III presents the basic characteristic frequencies. Relative
frequencies in Table III are related to the generator shaft
frequency. The running speed of the generator was 1500 rpm,
for which vibration signals were collected from sensor 5 with
the sampling frequency 25.6 kHz.

Fig. 17. Vibration signal of the WT gearbox.

Fig. 18. STFR result of the vibration signal.

Fig. 19. Time–frequency representation of the vibration signal via wavelet
transform with mother wavelet length of (a) 16 and (b) 256.

One segment time-domain signal of the vibration signal with
a time length of 0.5 s is shown in Fig. 17. As can be seen,
there is no significant information for fault diagnosis.

To decrease the computation cost, the vibration signal
is preprocessed by four times down sampling. The STFR
method with the URD is then applied for vibration signal
processing. The URD is constructed with the parameters
τ ∈ [0 : 5/ fs : 0.5], ξ ∈ [0.05 : 0.01 : 0.2], and f = 590 Hz.
The STFR result is displayed in Fig. 18. The same vibration
signal is processed by the wavelet transform and Hamming
window. The results are shown in Figs. 19 and 20. The change
in the wavelet scale is due to different methods used
in Figs. 19 and 20; therefore, there is no reason to keep the
window length the same. We chose the best results for display
in this paper, instead of the results with the same window
length.

On one hand, as shown in Fig. 18, the steady meshing
frequencies and corresponding harmonics can be found clearly.
Furthermore, the periodic impact components A, B, C, and D
with interval of 0.14 s are also illustrated in Fig. 18, which
accurately matches with the rotation period of intermediate
shaft 1/6.9853 as shown in Table III. Therefore, based on the
STFR result, it can be concluded that there may be a localized
fault in intermediate shaft.
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Fig. 20. Sparse time–frequency transform (STFT) result of Hamming window
with the window function length of (a) 64 and (b) 128.

Fig. 21. Analyze result of BP method in [30].

Fig. 22. Spalls on the gear of the intermediate shaft.

On the other hand, the results of wavelet transform fail to
reflect in the operation condition of the gearbox as shown
in Fig. 19. Fig. 19(a) shows some messy impacts when the
wavelet is short, but without obvious period. In Fig. 19(b),
the meshing frequencies can be found when wavelet is long.
However, this information is not enough to diagnose the fault.
It can also be found in Fig. 20 that impact components can
hardly be found in the result of Hamming window for gearbox.

Since the proposed method is a time–frequency decomposi-
tion technique, another comparison with BP sparse decompo-
sition method proposed in [30] is also conducted to verify its
advantages in time–frequency decomposition. The dictionary
is constructed as wavelet packet dictionary. The analyzed result
is shown in Fig. 21.

It can be seen from Fig. 21 that the impact vibration
component for fault prognosis can be hardly distinguished
under the high harmonic vibration interference.

TABLE IV

PARAMETERS OF THE BEARING

Fig. 23. Vibration signal of the WT generator.

Fig. 24. STFR result of the vibration signal.

Then, endoscopy was performed to detect the gearbox. And
a slight localized fault, spalling, was found on the gear wheel
of the intermediate shaft, as shown in Fig. 22, which is same
as the STFR result.

B. STFR for Bearing in WT Generator

In this section, another field test was performed to demon-
strate the effectiveness of the proposed method. The WT is
of the WD50/800 type, which the drivetrain configuration and
the transmission layout are the same as in last test shown
in Fig. 16. In this test, vibration signals were collected from
sensor 6 with the sampling frequency 25.6 kHz. Therefore,
the vibration signal collected reflects the condition of gener-
ator. The bearing is of SKF 6326c3 type. The parameters of
the bearing are listed in Table IV. The values of characteristic
frequencies are under the rotation speed of 1500 rpm.

One segment time-domain signal of the vibration signal with
a time length of 1 s is shown in Fig. 23. It can be seen that
the condition can be hardly displayed by the signal.

The URD is constructed with the parameters τ ∈ [0 :
5/ fs : 0.06], ξ ∈ [0.05 : 0.01 : 0.2], and f = 5000 Hz.
Then, the STFR method is applied for the WT incipient fault
diagnosis over the URD, and the result is shown in Fig. 24.
The same vibration signal is processed using the Morlet
wavelet transform and Hamming window. The results are
shown in Figs. 25 and 26.
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Fig. 25. Time–frequency representation of the vibration signal via wavelet
transform.

Fig. 26. STFT result of Hamming window with the window function length
of (a) 64 and (b) 128.

It can be seen in Fig. 24 that both the harmonic steady
modulation and impact components can be found from the
STFR. Furthermore, the impact components are illustrated by
A, B, C, D, E, and F with the duration of 0.082 s, which
matches with the rotation period of inner race 1/121.683 as
shown in Table III. The STFR result indicates that there is
a localized fault on the inner race of the generator bearing.
By the way of comparison in Figs. 25 and 26, there are some
impacts that can be found in the results of wavelet transform
and Hamming window, but it is too ambiguous to conclude
that there is a fault.

Since the rotation speed fluctuation will lead to the fluc-
tuation of instantaneous frequency of stationary component,
but will not influence the form of impact component, because
the impact component only depends on the inherent property
of mechanical system. Therefore, the speed fluctuation will
affect the extraction of stationary component of the proposed
method, but will not influence the extraction of impact compo-
nent. And the local fault can still be diagnosed by observing
if there is an impact vibration component related with rotating
speed existed in the time–frequency representation.

To verify the advantages of the proposed method in dealing
with nonstationary signals, the proposed method is used to
analyze the vibration signals of the same bearing under vari-
able speed operational condition. The vibration signal with a
time length of 10 s is shown in Fig. 27. The corresponding
rotation speed is shown in Fig. 28.

The signal between 4 and 4.05 s is intercepted for analysis,
and the analyze result is shown in Fig. 29.

It can be seen that the impact component can still be
extracted; therefore, the local fault can also be diagnosed.

Fig. 27. Vibration signal with a time length of 10 s under variable speed.

Fig. 28. Corresponding rotation speed.

Fig. 29. STFR result of the vibration signal under variable speed operational
condition.

Therefore, the experiment results illustrate the effectiveness
of the STFR method for incipient fault diagnosis of WT drive
train and damage location. Furthermore, it can also overcome
the limitations of traditional wavelet transform methods.

VI. CONCLUSION

The STFR method based on sparse representation theory
and WVD is proposed in this paper for WT drive train
incipient fault diagnosis. The URD applied in this method
is constructed based on the prior knowledge of vibration
signal model. It is composed of Fourier subdictionary and
Laplace subdictionary, which is similar with the inner struc-
ture of vibration signal components. The sparse coeffi-
cients can be obtained by solving the BPDN problem based
on the constructed dictionary, which shows the superior
noise reduction ability and, furthermore, retains the time–
frequency energy concentration. Compared with traditional
WVD, the STFR method solves the interference of cross term
in WVD, which is a benefit for fault feature information
extraction. It can be found from the results of simulation and
experiments that the condition information and even the fault
location are shown clearly in the result of STFR. And this
illustrates the effectiveness and the robustness of the STFR
method in the engineering applications with strong noise and
multicomponent coupling effect.
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