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ABSTRACT

Bearing plays an essential role in the performance of mechanical system and fault diag-
nosis of mechanical system is inseparably related to the diagnosis of the bearings. How-
ever, it is a challenge to detect weak fault from the complex and non-stationary vibration
signals with a large amount of noise, especially at the early stage. To improve the anti-
noise ability and detect incipient fault, a novel fault detection method based on a short-
time matching method and Support Vector Machine (SVM) is proposed. In this paper, the
mechanism of roller bearing is discussed and the impact time frequency dictionary is
constructed targeting the multi-component characteristics and fault feature of roller
bearing fault vibration signals. Then, a short-time matching method is described and the
simulation results show the excellent feature extraction effects in extremely low signal-
to-noise ratio (SNR). After extracting the most relevance atoms as features, SVM was
trained for fault recognition. Finally, the practical bearing experiments indicate that the
proposed method is more effective and efficient than the traditional methods in weak
impact signal oscillatory characters extraction and incipient fault diagnosis.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Condition monitoring of rotating machinery is important for system maintenance and process automation. Roller
bearing, as an important component, is not only widely used, but also a common failure unit in rotating machinery due to its
complex running conditions [1]. The accuracy of mechanical system is highly dependent on the dynamic performance of
bearings [2]. Severe working condition such as heavy load, high speed and lubrication oil lackage makes bearing damage
inevitable [3]. Therefore, faulty rolling bearings are often the root cause of faults and they must be detected as early as
possible to avoid the financial loss and disasters.

However, the measured vibration signals are always complex and non-stationary with a large amount of background
noise, and the useful fault information is usually too weak to be distinguished. Furthermore, the early fault symptoms
hidden in signals are always quite difficult to be found [4]. To overcome this problem, numerous vibration signal processing
approaches and feature extraction methods have been developed recently including probabilistic analysis, frequency
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analysis, time-domain analysis and various signal processing algorithms for the tasks of detection and diagnosis [5-7], such
as Fourier transform [8], wavelet transform (WT) [9-12], empirical mode decomposition(EMD) [13-16], spectral kurtosis
(SK) [17]. These methods can partition the time-frequency place and design innumerable linear time-frequency repre-
sentation methods according to the requirements. However, the results of these methods are directly influenced by the base
functions because signals can be analyzed very well only on the condition that the time-frequency structure of signal and
base function are similar. And it is difficulty to choose proper base functions.

To avoid this problem and represent the complicate signal more efficiently, atom decomposition methods were proposed
which is a signal representation method based on various parameterized basis functions library called the dictionary and
have received increasing attention in signal and image processing. Matching pursuit (MP) algorithm is one of the most
important atom decomposition methods which was proposed by Mallat and Zhang in 1993 [18]. At the same time, Qian and
Chen proposed an idea which was similar with MP. MP is a typical greedy algorithm that chooses a waveform that is best
adapted to approximate part of the signal at each iteration with a particular over-complete dictionary [19]. However, the
over-complete dictionary may lead to huge computation in atom decomposition for signal processing and the decom-
position results are directly influenced by the dictionary and the atoms should match with the structure characteristics of
the signals [18].

Fault diagnosis often includes three steps: information acquisition, feature extraction and condition recognition. Another
point of roller bearing fault diagnosis is pattern recognition [20,21]. Support vector machines (SVM) based on statistical
learning theory that are of specialties for a smaller sample number and guarantee the solution are exactly same with the
global optimal solution. Considering that it is hard to obtain sufficient fault samples in practice, SVM are applied to the
bearing fault diagnosis because of their high accuracy and good generalization for a smaller sample number. However, it is
not sensitive for incipient fault detection if use the traditional time domain indexes as inputs for SVM such as root means
square (RMS), absolute average, kurtosis, square-root amplitude.
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Fig. 1. Flow chart of the proposed method.
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Combined with the fault characteristics of bearing and inspired by atom decomposition methods, a new fault diagnosis
method based on impact time-frequency dictionary, short-time matching method and SVM is proposed to overcome the
limitations of traditional methods and enhance the effectiveness of incipient fault diagnosis. First of all, according to the
mechanism of roller bearing, an impact time-frequency dictionary is constructed to match the structure characteristics of
signals. Then, to overcome the limitations of conventional sparse representation methods for weak impact signal oscillatory
characters extraction and generate feature vectors, a short-time matching algorithm is proposed by calculating the rele-
vancy between the time-frequency impact atoms and the signal which was intercepted by a sliding window. Finally, as a
diagnostic classifier, SVM was trained by the features which were extracted by the short-time matching. Compared with the
traditional signal processing and fault diagnosis methods, the proposed method can realize the detection and extraction of
weak impact signal when the signal-noise-ratio (SNR) is extremely low. The process chart is shown in Fig. 1.

The remainder of this paper is organized as follows. Section 2 describes theoretical background briefly. The time-
frequency atoms-driven SVM method was described in Section 3. Then, three simulations are described in Section 4 and two
practical applications are proposed in Section 5. Finally, conclusions are drawn in Section 6.

2. Theoretical background
2.1. Atomic decomposition

Conventional linear signals representation theories are based on the base function decomposition. However, real signals
mixed many components and cannot be represented by a base function. In recent years, many efforts and much progress
have been made to improve the performance of traditional methods. And the atomic decomposition theory, which is an
extension of basis function expansion, was proposed [22].

The main idea of atomic decomposition is to replace the base function sets with over-complete redundant function sets
which is called the over-complete dictionary; then trace the parameterized functions matched with the signal structure
features; finally signal was represented as a linear combination of few vectors which are called atoms in the dictionary. If the
atoms are similar with the signal's inner structure, the signal will be accurately represented with few atoms. Therefore, in
atomic decomposition theory, the sparser the decompose results are, the closer between the atoms and signals' essence and
inner structure. And it is easier for feature extraction because the information is focused on that few atoms. Compared with
traditional basis function expansion, atomic decomposition can represent arbitrary complex signal based on the over-
complete dictionary.

Various atomic decomposition methods have been proposed to reduce the computational complexity and running time,
such as frame decomposition, basis pursuit (BP) [23] and MP [18].

The problem of optimally approximating a function with a linear expansion over a redundant dictionary of waveforms is
non-deterministic polynomial hard (NP-hard) [24]. Matching pursuit is an approach to represent the signal with a sub-
optimal linear combination of a set of atoms selected from the dictionary. The principle of MP algorithm is described in the
following. Detailed explanation can be referred to [18].

Set H as the Hilbert space. D € H is the over-complete atom dictionary and D = {gy(t)}ye - I is the parameters set. g, is

the atom determined by parameter y and ||g, || = 1. Suppose that a signal fis to be analyzed and f € H. With ROf=f. R"f is the
residual signal after n iterations. g, e D is the best match atom in n'M iterations. After orthogonal projection with D, f can be
decomposed as

f=(Rf.&, )&, +R'S. %))

where g, eD. RIf is the residual signal after approximating f with &,
obviously R!fis orthogonal to g,,» therefore

11 =| (., |+ IR, @
to minimize R'f, the vector g,, selected should satisfy
(180)| = map| .8 = sl 1.5, 5

where Iy is a set of parameters, /'y e I". is the optimization factor and O <a < 1.
The residual R'f is further decomposed in the same way as f. Let R°f =f, at step n, the residual signal become R"f. In
order to maximum <R"f, g},n>,gh should be selected by

[(R'f.g, )| > asup|(RY., )| )
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the residual signal is then decomposed by
Rf = (R'.g,, )8, +R"*'f. 6)
where R"*!f is the new residual signal after decomposed R"f. In the same way, R**f is orthogonal to g,,. therefore
IR'FI = |[(R°f. g, )|+ 1R 2 ®)

after m iterations, the signal f can be represented as

m—1
f=>"(R'.g, )8, +R"f @)
n=0
and

IR™f12 = | (R"f.g,, Y[+ IR, ®)

2 mep2
+IR™f 9)

=3 (R'f.g, )8,
n=0

where R™f is the residual signal after m iterations.
MP algorithm is a continuous iterative process. It will look for the atom which is most relevant to the residual signal R™f
in the dictionary D.

2.2. Support vector machine

Support vector machine is a computational learning method for small samples classification based on the structural risk
minimization (SRM) [25,26]. The process of SVM for a binary classification is described as follow.

Given a sample set S = {(xi,yi)}f’: 1» Where x; are the inputs and y; € {—1, +1} are the labels of x;. Each class associates
with labels be y; = 1 for positive class and y; = — 1 for negative class. Then, an optimal hyperplane f(x) = 0 is computed in a

feature space to construct SVM and separates the given data

M
f=wix+b="> wpxj+b=0 (10)
=

where w is N-dimensional vector and b is a scalar. The w and b are used to define the position of the hyperplane. f(x) is the
decision function to create hyperplane which will classify input data. The optimal separating hyperplane is the separating
hyperplane that creates the maximum distance between the plane and nearest data, that is, the maximum margin. Fig. 2
shows an example of the optimal hyperplane.
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Fig. 2. The optimal hyperplane for a binary classification.
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Considering the noise with slack variables ¢; and the error penalty C, the problem is to find the solution of the opti-
mization problem:

N
Minimize%||w||2+CZ Cirs (1)
i=1
Yiwixi+b) > 1—¢;, i=1,-M
Subjecttol ¢; =0, i=1,--M , (12)
c=0

By converting the problem with Kuhn-Tucker condition into the equivalent Lagrangian dual problem, we can get a
simpler calculation:

o 1 X M M
Minimize L(w, b, @) = §||w|| - ,:21 ay;(w-x;+b)+ 1; aj, (13)
We have the saddle-point equations as follows at the optimal point:
oL oL

We can get:
M M
w= > ayx;, > ay;=0 15)

i=1 i=1
Using substitution Eq. (15) into Eq. (13), the dual quadratic optimization problem converts into:
i M 1¢
Maximize L(a) = ; a; —51; AAYYiXi - X (16)
=0, i=1,-- M,
. M
S
ubject to ZaLVi —0 a7
i=1
Using the non-linear vector function &(x;), the input vectors x; can be mapped into high-dimensional feature space.

Mercer kernel returns a dot product of the feature space mappings of original data points, stated
asK (x;, ;) = (q§T(x,-) : cb(xj)). Then, the dual quadratic optimization problem can be given by

M M
Maximize L(@)= > —% > aiayyiK (xi,x) (18)
- -1

a;=0, i=1,-M,
. M
Subject to S ;=0 (19)
i=1
where ; is the optimal Lagrange multipliers. Then the classifier based on the support vectors is

N
fx)=sign <Z aiyK(x, x;)+ b) (20

i=1

3. Time-frequency atoms-driven SVM method
3.1. Analysis on mechanism of roller bearing

When a roller bearing is working, the outer race usually connects with bearing pedestal; the inner roller connects with
shaft and rotating with the shaft. The oscillatory system of bearing and pedestal will be stimulated to vibrate by the shaft
because of structural features, assembly error and exogenous process. The mechanism of vibration is shown in Fig. 3.
Therefore, in practice, the vibration signals we get from sensors are the synthesis of the vibration caused by these factors.
But what we care about is only the vibration which caused by the fault. So, it is the main task that how to extrude the fault
vibration from the synthesis vibration. In order to diagnosis more accurately and efficiently, the characteristics of vibration
signals caused by each factor should be studied firstly.
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Fig. 3. Mechanism of roller bearing vibration.
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Fig. 4. (a) Vibration waveform of normal bearing and (b) vibration waveform of bearing with abrasion.

Fig. 5. Vibration signals of bearing with surface damage.

The faults of bearing are mainly divided into two classes: one is abrasion, the other one is surface damage, such as pitting

and peeling off.

The vibration caused by abrasion is similar with the normal bearing's vibration. All of them have strong randomness. But
the vibration amplitude of abrasion is bigger than the normal ones. Fig. 4 shows the characteristics of the abrasion fault. In
generally, abrasion of the roller bearing changes gradually and needs to experience a long time. It cannot lead to bearing
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damage immediately, while surface damage is much more danger than it. Therefore, what we most care about is the surface
damage.

If a roller bearing has a surface damage, the pulse force will suddenly change when the damage point roll from the
surface of bearing. This pulse force is a wideband signal, and will cover the high frequency natural vibration frequency.
Therefore, resonate will be happened, and vibration as shown in Fig. 5 will be caused.

According to Fig. 5, the components of impact vibration are divided into two parts: the first one is the vibration of low
frequency. In this part, repeated impacts will be generated due to the passing of the rolling elements over the defect and the
period is T, as shown in Fig. 5. The repetition rate of the impacts, which is called as ‘characteristic defect frequency’, is
determined by defect location, shaft speed and bearing geometry and always below 1 kHz [27]. The other one is the vibration
of high frequency. This part is caused by the impact and its period is T,, as shown in Fig. 5. By means of detecting whether there
exists high frequency in the vibration signal is an effective method for bearing fault diagnosis. However, the high frequency
vibration of roller bearing system is very complex and has many components such as the natural vibration of sensors, rollers,
inner and outer race radial bend. Therefore, how to extrude and extract the high frequency vibration signal from the com-
prehensive vibration for the effective operation failure criterion is the crux of the roller bearing fault diagnosis technology.

3.2. Impact time-frequency dictionary based on characteristics of roller bearing vibration signals

Decompositions of signals over family of functions which are called time-frequency atoms are well localized both in time
and frequency domains and have been found many applications. The properties of decomposition results might be very
different with different choices of time-frequency atoms. It is often necessary to adapt the time-frequency decomposition to
the particular signal structures for feature extraction. The selection of the atom dictionary is an important point for signal
sparse representation. In order to get a better performance, the over-complete dictionary should be as closely matched with
signal’s inner structure as possible. Then the signal will be represented with less atoms and the result will be sparser.

According to the analysis on mechanism of roller bearing and the structure characteristic of vibration signal in Section 2,
this paper constructs an impact time-frequency dictionary based on the characteristics of roller bearing vibration signals.
The atom g, is defined as:

(— < ) -2zf(t—1)
g, =4 Ae 1-¢ sinaf(t—-7)) t=«7 21
0 t<t

where y = (7,f,£), and it is an element of the set '=T x F x Z,
T={r1,72,-,7p} CR, peZ”
F={f1.f2,~.fm} CRY, meZ™ , (22)
Z={§,&, .6} CRY N[0,1), neZ”
¢ is the damping coefficient, and — Jf_gis the damping attenuation characteristics of impact response. f is the fre-
quency of the atom. £ and f vary from different atoms. 7 is the initial moments of impact response. A is used for atom
normalization. Let H refer to the Hilbert space, D C H is the over-complete dictionary for sparse representation. Suppose g(t)

is real and continuously differentiable. Therefore, the family D = (gy(t)) r is extremely redundant. Fig. 6 illustrated the
ye

waveform of the atoms. According to Fig. 6, we can see that the waveforms vary from different &f,z. The waveform will
oscillates faster as £ increase with other parameter unaltered; the waveform will decrease faster as f increase with other
parameter unaltered; and the waveform will be translated as 7 changes.

3.3. Oscillatory feature extraction based on sliding window and the correlation coefficient

In MP algorithm, relevance of the residual signal and the atom is measured by the inner product. However, the inner
product will be influenced by the [>-norm of the signal. What's more, signal was represented as a linear combination of few
atoms. But what we care about is the extraction of impact signal and representation of a linear combination of atoms can
lead to huge computational cost.

Therefore, in this paper we proposed a novel feature extract method based on impact time-frequency dictionary, cor-
relation filter [28] and short-time window concept.

In this method, we define the correlation coefficient «, as:

8y, X()
(g0 o
gy l1211x(E)ll2

Considering y € I',x, should be a multidimensional matrix and its dimension is decided by the space I'=T x F x Z. In
this way, the influence of the I>-norm of the signal can be eliminated. What’s more, we use a short-time signal f(z, 7+ W)
instead of the entire signal x(t) to match the dictionary D, where W is the atom support width, andris the initial moments

K, = cos 0=
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of the short-time signal. With smaller W, the correlation coefficient x,can be bigger. However, the value of W; should at
least no less than the width of impact oscillation waveforms. Therefore, in the practical applications, the width of impact
oscillation waveform should be estimated by observing and studying the time domain waveforms of signals. And the value
of W;s can be determined according to the width of impact oscillation waveform. Then, the parameters of D become f, &
instead of 7,f,£. And in order to find the atom g, which is most relevant to x(t) at moment 7, the maximum of correlation
coefficient matrix x, should be found:

K(7) = max K = K{r,f, E} (24)
feF
EeZ

where k7 is the subset of k, at momentr, f, € is the frequency and damping coefficient of x(z).The calculation of x(7)is to seek
for the peak of the space curved surface at momentz, as shown in Fig. 7

P,:{K;(f,g):feF,gez}. (25)

After sliding the entire signal x(t), we can get a curve of (z, k(7)). This curve has multiple peaks and unilateral oscillatory
damping behavior with the frequency and damping coefficient f, £. Suppose (77, k(7)) is the maximum point of x(z). This
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Fig. 6. Waveform of the atoms (a) g, with ¢=0.05, f =5, z=0; (b) g, with ¢=0.1, f =5, 7= 0; (c)g, with {=0.05, f =10, z=0; (d)g, with ¢=0.05, f =5,
T=2.

Fig. 7. The space curved surface of correlation coefficient «} of signal f(t) and atom g,(z=7').
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point indicates there is a section of signal beginning from the momentz'matches best with corresponding atom g,. Damping
coefficient £ and frequency f of the corresponding atom in (7, k(z')) represent the oscillation characteristics of the impact.

3.4. Fault recognition based on SVM and time-frequency impact atoms

We can extract n atoms with the n biggest correlation coefficient x, when a signal was composed of n types of impact
signal. n can be determined by the number of impact components or heuristic method. When «, is smaller than a certain
extent, the atoms are matching with more noise than signal. Therefore, in a certain range, the larger n is, the more atoms are
used for diagnosis and the result will be better. However, the run time will increase as well if n gets larger. Therefore, n
should be determined properly by balancing the run time and diagnostic accuracy. These n atoms represent the char-
acteristics of impact's properties in the operation of the roller bearing.

After extracting the n most relevant atoms, it was found that the damping coefficient extracted by the proposed method
is not as precise as the frequency coefficient due to the influence of noise when SNR is low. Therefore, parameter f is more
efficient and suitable. Then, f of these atoms can be used as the input features of SVM, and faults can be detected in the
incipient stage.

4. Simulated study

To verify the validity of this method in the present study, three simulation experiments were conducted. It has been
found that the proposed method is more efficient, and can extract the impact signal when the signal-noise-ratio (SNR) is
extremely low. The frequencies of the impact components can also be acquired by the parameters of atoms. Firstly, a
simulation was performed to verify the tolerance to noise of the short-time matching method. Secondly, another simulation
was performed to illustrate the effectiveness of this method in the weak signal detection and impact signal extraction with a
comparison of MP. Thirdly, a gradual increasing impact signal with invariable harmonic and Gaussian noise amplitude is
simulated to verify the performance of the method. In these simulations, s(t) and h(t) represent a single impact signal and a
single harmonic signal respectively, which are defined as:

0 t<0
5'(t) = _ Si . . - s . (26)
d exp( i 2rf; t) sin (27[f]t) t>0
0 t<0
h(ty={ sin@zaf,t) 0<t<0.05, 27
0 t>0.05

4.1. Simulation 1

In this subsection, the proposed method is applied to extract weak impact signal from the original signal polluted by
strong noise. Two periodic impact components are used to simulate the fault signal generated by two faults. The simulation
signal is defined as:

X(6) = x1() +X2(0) +x3(0), (28)
X1(t) =51 (t—To— [t/T} X T)
X2(t) =53 (t—Tb— [t/T/} X T,) 5 (29)
x3(t) =n(t)
where s1(t) and s,(t) are defined in Eq. (26) as:
0 t<0
s1(t) = 4 . -si (30)
exp( T 27f t) sin(2zft) t>0
0 t<O0
sy(t) = &5 . si C2Y
2 exp< g 2zf, t) sin(2zf,t) t>0

with Ty =0.0255,T; =0.1255,T = 0.195,T' = 0.25,£; = 0.07, fi=200 Hz, &, =0.07, f,=333 Hz. Fig. 8 shows the waveform of
simulation signal. x;(t) and x,(t) are two periodic impact signals as shown in Fig. 8(a) and (b), x3(t) is Gaussian white
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noise with zero-mean and 1 standard deviation, SNR=0.1023 dB, as shown in Fig. 8(c). Fig. 8(d) displays the waveform of
mixed signal.

Fig. 9 displays the detection result of the simulation signal by using the proposed method. Fig. 9(a) shows the correlation
coefficient x, of mixed signal and the dictionary D. Fig. 9(b) shows the reconstructed signal using the five biggest x, and
corresponding atoms. The result reveals that the proposed method can eliminate the influence of irrelative noise and
effectively extract the target signal submerged in strong noise.
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Fig. 8. The constructed signal: (a) the waveform of periodic impact component s;(t) with & = 0.07, f;=200 Hz; (b) the waveform of periodic impact
component s,(t) with & = 0.07, f,=333 Hz; (c) the noise signal n(t); (d) the waveform of mixed signal.
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Fig. 9. The simulation results: (a) the correlation coefficient «,; (b) the reconstruction impact signal using the proposed method.
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Fig. 10. The decomposition result of the simulation signal by using EMD.

For purpose of comparison, the same simulation signal is analyzed by EMD and spectral kurtosis (SK). Fig. 10 illustrates
the detection result by using the EMD. And it can be found that there is no explicit periodic transients can be extracted
because of the influence of strong noise. Additionally, the kurtogram of SK and the resulting filter signal are illustrated
in Fig. 11. It can be found that the results are not obvious enough and fail to extract the periodic impact signal completely.

4.2. Simulation 2

In this simulation, the proposed method is applied to extract impact signal from the original signal with sine signal and
noise. The simulated signal is defined as:

X(£) = X1 () +x2(0)+x3(0) (32)

X](t)ZS(t—To— [f/T] X T)
() =h(t-Ts—[t/T] x T, (33)
X3(t) =n(t)

with To =0.025s5,T¢' = 0.125s,T =T = 0.2s,£; = 0.07, f;=f,=200 Hz. s(t) and h(t) are described in Egs. (26) and (27). x; is a
periodic impact signal as shown in Fig. 12(a), x, is a cyclic occurring harmonic signal as shown in Fig. 12(b), x5 is Gaussian
white noise with zero-mean and 1 standard deviation, SNR=11.3150 dB, as shown in Fig. 12(c). Fig. 12(d) shows the
simulation signal x which is constructed by Eq. (32).

The simulated signal is processed to match the time-frequency impact dictionary by the proposed method. The dictionary

is D= (gy(t))yerwhich is constructed in 3.2 with damping coefficient &, frequency of the atom f,, wheref [0.05,0.15],

fe[100,500]. Fig. 13 displays the detection result of the simulated signal. Fig. 13(a) is the impact component in original impact
signal. Fig. 13(b) is the correlation coefficient x, and Fig. 13(c) is k, after smoothing. Fig. 13(d) is the reconstructed signal using
the five biggest x, and corresponding atoms. It is evident that the impact signal is completely and purely extracted from the
mixed signal. By reconstructing signal, the impact vibration signal caused by fault can be extracted successfully. What's more,
frequency of the impact signal can also be obtained from the corresponding atoms.
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Fig. 11. The analysis result of the simulation signal by using SK: (a) the kurtogram; (b) the resulting filter signal.
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Fig. 16. The analysis result of the simulation signal by using SK.

Fig. 14 illustrates the detection result of the same simulation signal by MP method and the same dictionary D.
Fig. 14(a) shows the impact component in original signal. Fig. 14(b) shows the reconstruct signal with 10 iterations.
Fig. 14(c) shows the reconstruct signal with 30 iterations. It can be found that MP method matches harmonic signal first and
the impact signal was matched after 30 iterations even though atoms in the dictionary D are all impact signals, because the
correlation was measured by the inner product, while a maximum inner product does not lead to the most relevant impact
component. The same simulated signal is also analyzed by EMD and kurtogram. The analysis result of EMD is shown in
Fig. 15. It can be found that there is no explicit impact component being extracted. And the resulting filter result of kur-
togram is shown in Fig. 16. It can be found that kurtogram can extract impact signal and harmonic signal from the noisy
signal. However, it cannot extract only impact signal from the original signal. The comparison results illustrate the excellent
performance of the proposed method in the application of extracting impact signal from the original interfered signal.

What's more, the efficiency is also improved. Table 1 shows the run times of two methods. From Table 1 we can see that
the run time of MP is 18 times more than the short-time matching method.

The above simulation results demonstrate the effectiveness and high efficiency of the proposed method in the extraction
of specific signal, in this study is the impact component, while MP method is for purpose of signal sparse representation. MP
is a greedy algorithm which is to find the biggest inner product. However, the most relevant atom not always leads to
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Table 1
Run time of the two methods.

Method Run time (s)
Short-time matching method 0.9207
MP with 10 iterations 5.7930
MP with 30 iterations 16.6232

biggest inner product. While in the proposed method which is based on the correlation coefficient ,, the impact signal was
matched firstly.

4.3. Simulation 3

In this part, a simulated signal is used to verify the effectiveness of the proposed method. In actual vibration signal, the
harmonic signal is always existed while the impact part will appear and increase after operating for some time. What's
more, the aperiodic impulse noise can also appear in most cases. Therefore, we define the constructed signal as:

X(t) = X1(£)+0.05x2(t) 4 0.3x3(t) +X4(t) (34
where
0 i<20
X1(0=190.05 4 (i—20) 51 (t—To— [t/T] xT) 20 <i<40 35)
X (t)= sin (27 x f x t), (36)
x3(t) = n(t), 37

0 O<t<rt
X)) =< S2(t) 7<t<7+4+0.05 (38)
0 t>7+0.05

with Ty =0.025s, T =0.05s,£; =0.05, fi=1000 Hz, f,=200Hz, 7 is a random value in [0,0.95). i is sample number and
0 <i<40. We assume that the first 20 samples are normal and without impact part and the last 20 samples with impact
signal. x; is a periodic increased impact signal, which is increasing from O to 1 at 0.05 intervals. x; is a continuous harmonic
signal, x3 is Gaussian white noise with zero-mean and 1 standard deviation. When i=40, the waveforms of them are shown
in Fig. 17. x4 is the aperiodic impulse noise with &, =0.02 and f,=3000 Hz, which is added randomly in each sample and
lasts 0.05 s. zis the start time of aperiodic impulse noise. s;(t) and s,(t) are described in Eq. (26). The waveform of sx(t) is
shown in Fig. 18.

Root means square (RMS) of the signal are shown in Fig. 19.

Then x is processed to match the dictionary D. The parameters are: damping coefficient £ = {0.005: 0.01: 0.2} U {0.2:0.1: 0.9},
frequency of the atom f € [100: 10: 1500]. The range of damping coefficient £ has almost covered the entire range and is divided
non-equally to ensure the high resolution when &is low. Many practical applications show that it is a interference fit or a tight
transition fit between inner race and axis, while it is a loose transition fit between outer race and bearing pedestal. And sensors
are usually placed in bearing pedestal to measure the vibration. As a result, when the failure of bearing emerges, no matter it is in
inner race, outer race or bearing rollers, the inherent vibration of outer race will be risen and also generate modulation phe-
nomenon. Therefore, frequency coefficient f represents the outer race first-order inherent frequency and the range of f can be
determined by the spectrogram of corresponding bearing. Figs. 20 and 21 display the waveforms of 4 most relevant atoms for
different samples. Fig. 20 is the 8th sample. Fig. 21 is the 27th sample.

From Fig. 20, we can see that in 8th sample, when there is no impact component, the main matching atoms are harmonic
or the impact which is similar to harmonic with small f. In 27th sample, all main matching atoms are obvious impacts with
large f.

Then we use f as the inputs of SVM classifier. The predict results based on SVM and different features are shown in
Fig. 22.

From the classifier results in Fig. 22, we can see that the impact component was detected in 26th sample, when the
impact amplitude is 0.3, which energy is 6.72% of the total energy.

For purpose of comparison, the 26th simulated signal, when the incipient weak impact component is identified by the
proposed method, is analyzed by EMD and SK respectively. Fig. 23 shows the IMFs derived from EMD. We can see that there
is no explicit incipient impact component being observed. The resulting filter signal of SK is shown Fig. 24. It can be
observed that the SK is also insensitive to weak impact signal. The simulation results demonstrate the effectiveness of the
proposed method in impact recognition and condition classifier.
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Fig. 17. The waveforms of: (a) the periodic increased impact signal x;; (b) the continuous harmonic signal x,; (c) the white noise x3; (d) the constructed
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Fig. 18. The waveform of the aperiodic impulse noise x4.
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Fig. 20. Waveforms of the 4 most relevant atoms for the 8th sample.
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Fig. 21. Waveforms of 4 most relevant atoms for the 27th sample.
5. Applications to practical bearing vibration signals

To show the effectiveness of the proposed method for bearings incipient fault diagnosis, the applications to two run-to-
failure bearing life test are studied in this section.

5.1. Case 1

In this subsection, a roller bearing life test was used to prove the validity of the theoretical analysis and the ability for
incipient fault detection. To further demonstrate the effectiveness of the proposed method, the results of fault feature
extraction by the proposed method are compared with traditional time-domain features.
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Fig. 24. The analysis result of the simulation signal by using SK.

5.1.1. Experiment introduction

This bearing run-to-failure test data are shared by the Center of Intelligent Maintenance System (IMS) in the University of
Cincinnati [29].The test was performed under normal load conditions on a specially designed test rig which is shown
in Fig. 25.
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The bearing test rig hosts four test bearings on one shaft which is driven by an AC motor and coupled by rub belts. The
rotation speed of the bearing was kept constant at 2000 rpm. A radial load was added to be 600 lbs. The vibration signals are
collected every 10 min with a sampling frequency of 20 kHz per channel by a National Instruments LabVIEW program. The
length of data in each sampling is 20,480 points. In the entire life span, a total of 984 groups of data were collected. At the
end of the test-to-fail experiment an outer race failure occurred on bearing 1.

For the purpose of comparison, four time-domain features of the same signal were also used as inputs of SVM. They are
root means square (RMS), absolute average, kurtosis, square-root amplitude. The waveforms of these features are shown
in Fig. 26.

5.1.2. Feature selection

After information acquisition, short-time matching algorithm was utilized for feature extraction.

The dictionary we used is D = (g,(t) which is constructed in 3.2 with damping coefficient &, frequency of the atom
foand the atom support width Wi. Accérecfing to the intrinsic frequency of outer race and the width of shock response
waveform, the parameter space /" is determined as £ = {0.005:0.01:0.2} U {0.2:0.1: 0.9}, f = {500: 5: 5000}, W, = 0.004.

Then, the vibration signal is processed by the proposed method. Fig. 27(a) is an original signal in 100 h. Fig. 27(b) is the
correlation coefficient x,. In this experiment, we extract the first 100 biggest x, and the corresponding atoms. Fig. 28
displays the waveforms of 9 atoms with the first 9 biggest correlation coefficientsk, in 18.33 h, when the roller bearing was
normal. The waveforms of 9 atoms with the first 9 biggest correlation coefficients «, in 88.83 h, when the roller bearing
began to fault but is not obvious, are shown in Fig. 29. And the waveforms of atoms in 116.67 h, when the fault is obvious,
are shown in Fig. 30.

From the waveforms of atoms at different moments and bearing conditions, we can see that the atoms can reflect the
bearing conditions accurately. When the bearing is normal, the waveforms of the most relevant atoms are similar to har-
monic with smaller damping coefficient £ and frequency f because the original signal is mainly constituted by harmonic
components. In 88.83 h, when in fault initial phase, original signal began to add impact components, therefore the wave-
forms of the most relevant atoms are added with some impact components with damping coefficient £ and frequency f
increasing. In 116.67 h, when the fault is obvious, the waveforms of the most relevant atoms are mostly impact components
with big £ and f.

5.1.3. Fault pattern recognition
After extracting the atoms, we use frequencies of the 100 most relevant atoms and time-domain features as inputs of
SVM to detect the weak impact components. The classification results are provided in Table 2 and Fig. 31.

5.1.4. Discussion

From Table 2 and Fig. 31, we can see that in 33.3-41.7, 66.7-75.0 and 116.7-125.0 test samples, that is when the roller
bearing is normal or has serious failure, the proposed method and time-domain features all can recognize the condition
with almost 100% accuracy. However, in 103.3-111.7 test samples, that is the fault incipient stage, time-domain features are
unable to extract the weak fault signal, which test accuracy is 68.63%, while the proposed method still has 100% accuracy.
Because in the fault incipient stage, the components of vibration signal changed but the amplitude of them did not change a
lot. Therefore, the proposed method is able to detect the weak fault as the atoms that relevant to the original signal have
changed a lot, but the time-domain features cannot.

5.2. Case 2

5.2.1. Experiment introduction

In this subsection, we use another bearing run-to-failure test to demonstrate the effectiveness of the proposed method.
This test bearing is under constant load conditions to reflect the defect propagation processes. The test bench is composed of
main body, control system, data acquisition computer system, power and drive system, hydraulic loading system and so on,
as shown in Fig. 32.

The bench is designed as a supported beam structure as described in Fig. 33. The two steady bearings are N312
cylindrical roller bearings which are fixed at the middle of the shaft and the two test bearings are 30,311 tapered roller
bearings which are installed on both ends of the shaft. The parameters of bearings are listed in Table 3. Axial load F, is
applied on bearing4 and transmitted to bearing 1 through the shaft. Radial load F; is applied on the bushing and transmitted
to the shaft through the steady bearings, finally applied on the test bearings. In this test, F, is 15 kN and F; is 27 kN. The
rotation speed is 1500 r/min constantly.

The spindle motor speed and test load are controlled by computer. Vibration signals are exported through the screw
which is connected to the outer race and collected by the Lance LC0401 High Sensitivity ICP accelerometer. YE6267 dynamic
data collection and analysis system is used to record data. Sampling frequency is 10 kHz per channel and 32,768 points is
collected every five minutes. As shown in Fig. 34. The temperatures are monitored by the thermocouple sensors.

In the end of the test, the bearing fails with a rolling element defects as shown in Fig. 35.

Four time-domain features of the same signal were used as inputs of SVM for comparison the same as Case 1. The
waveforms of RMS are shown in Fig. 36.
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Fig. 28. Waveforms of the 9 most relevant atoms in 18.33 h.

5.2.2. Features selection
After the test and the vibration information acquisition, short-time relevance matching algorithm (STRM) was utilized for

feature extraction. The dictionary we used is D= (g, (t) which is constructed in 3.2 with parameters of damping
coefficient &, frequency of the atom f, and the atomygﬁpport width W;. The parameter space I is determined
asé =1{0.005:0.01:0.2} U {0.2:0.1: 0.9}, f = {500: 5: 5000}, W = 0.004, which is the same with case 1. In this experiment, we
extract the first 100 biggest x, and the corresponding atoms.

5.2.3. Fault pattern recognition
After extracting the atoms, we use frequencies of the 100 most relevant atoms as inputs of SVM to detect the weak

impact components. Data from 58.33 h to 62.5 h and from 135.42 h to 139.58 h are used for training. The predict results
based on SVM and different features are shown in Fig. 37. The classification accuracies are provided in Table 4 and Fig. 38.
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The diagnosis results with different features in SVM.

Test samples (time/h)

Testing accuracy with different inputs

The 100 most relevant atoms Time-domain features
33.3-41.7 (Normal) 100.00% 100.00%
66.7-75.0 (Normal) 100.00% 98.04%
103.3-111.7 (Incipient fault) 100.00% 68.63%
116.7-125.0 (Obvious fault) 100.00% 100.00%

Testing accuracy

100.00% -
90.00%
80.00% 4
70.00% 4
60.00%
50.00% 1
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10.00% <
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Fig. 31. Testing accuracies with different features.
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Fig. 32. Test bench of the bearing run-to-failure.
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Fig. 33. The load diagram of four bearings.
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Table 3
Parameters of bearings.

Bearing type Outer diameter (mm) Inner diameter (mm) Roller diameter (mm) Roller number Basic dynamic load (kN)
30,311 120 55 16.25 16 152
N312 130 60 19.1 16 212

Acceleration
sensor

Temperature
sensor

Fig. 34. Location of accelerometer sensors and temperature sensors.

Fig. 35. The defects of the failure bearings.
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Fig. 36. Waveform of root means square (RMS).

5.2.4. Discussion

From Fig. 37(a), we can see that if use time-domain features as inputs of SVM, the fault can be diagnose in 132 h, and
after that there still are some samples be misdiagnosed. While in Fig. 37(b), when we use the parameters of atoms as inputs
of SVM, the fault can be diagnose in 126.3 h, which is much earlier than traditional features. And there is no misdiagnosis
after 126.3 h. What's more, according to the comparison result in Table 4 and Fig. 38, we can see in 126.17-130.33 and
129.50-133.67 test samples, that is the fault incipient stage, the initial fault cannot be distinguishable by SVM if use the
traditional statistical indexes. While the proposed method is sensitive to the weak fault even if in the very early stage with
100% accuracy.
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Fig. 37. SVM predict results based on the two different features: (a) based on the traditional time-domain features; (b) based on the parameters of most
relevant atoms.

Table 4
The diagnosis results with different features in SVM.

Test samples (time/h)

Testing accuracy with different inputs

The 100 most relevant atoms

Time-domain features

66.67-70.83 (Normal) 100.00% 100.00%
126.17-130.33 (Incipient fault) 97.06% 0.00%
129.50-133.67 (Incipient fault) 100.00% 31.37%
133.67-137.83(Obvious fault) 100.00% 94.12%
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Fig. 38. Testing accuracies with different features.
6. Conclusions

In this paper, we construct a dictionary based on the mechanism of roller bearings, and propose a novel fault diagnose
method based on short-time matching and SVM, to overcome the limitations of traditional sparse representation and fault
diagnose methods. Firstly, in order to reduce the calculation cost, we use a short-time signal f(z, 7+ W;) instead of the entire
signal x(t) to match the dictionary D. Secondly; a new correlation measurement index based on correlation filter and MP was
proposed to avoid the influence by [>-norm in conventional methods. Thirdly, in order to make the method more suitable for
failure diagnosis, we extract the atoms which were mostly relevant to the original signal as inputs to SVM instead of
representing signal as a linear combination of atoms. The simulation and comparison results illustrate that the proposed
method behaves better than MP, EMD, SK and traditional time-domain methods in detecting the weak impact signal with
strong noise condition. The applications of roller bearing run-to-failure test show that the proposed method can reflect the
running state of rolling bearing in real time and detect the fault in the embryonic effectively and efficiently. In addition, this
method could be applied to the fault diagnose of other key machine components and more fields such as feature extraction
and noise reduction.



370 R. Liu et al. / Mechanical Systems and Signal Processing 75 (2016) 345-370

Acknowledgments

This work is supported by the National Key Basic Research Program of China (No. 2015CB057400) and National Natural
Science Foundation of China (Nos. 51225501 and 51335006).

References

[1] Y. Yang, D. Yu, J. Cheng, A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM, Measurement 40 (2007) 943-950.
[2] B.Li, M.Y. Chow, Y. Tipsuwan, J.C. Hung, Neural-network-based motor rolling bearing fault diagnosis, IEEE Trans. Ind. Electron. 47 (2000) 1060-1069.
[3] C.Sun, ZS. Zhang, ZJ. He, Z]. Shen, B.Q. Chen, W.R. Xiao, Novel method for bearing performance degradation assessment-A kernel locality preserving
projection-based approach, Proc. Inst. Mech. Eng. C J. Mech. 228 (2014) 548-560.
[4] J. Yuan, Z]. He, Y.Y. Zi, Y.G. Lei, Z. Li, Adaptive multiwavelets via two-scale similarity transforms for rotating machinery fault diagnosis, Mech. Syst.
Signal Process. 23 (2009) 1490-1508.
[5] J. Yuan, ZJ. He, Y.Y. Zi, Gear fault detection using customized multiwavelet lifting schemes, Mech. Syst. Signal Process. 24 (2010) 1509-1528.
[6] RJ. Hao, ZK. Peng, Z.P. Feng, F.L. Chu, Application of support vector machine based on pattern spectrum entropy in fault diagnostics of rolling element
bearings, Meas. Sci. Technol. 22 (2011).
[7] Y. Yang, ].S. Cheng, K. Zhang, An ensemble local means decomposition method and its application to local rub-impact fault diagnosis of the rotor
systems, Measurement 45 (2012) 561-570.
[8] N.E. Huang, Z. Shen, S.R. Long, M.L.C. Wu, H.H. Shih, Q.N. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert
spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. A Math. Phys. 454 (1998) 903-995.
[9] R.Q. Yan, R.X. Gao, X.F. Chen, Wavelets for fault diagnosis of rotary machines: a review with applications, Signal Process. 96 (2014) 1-15.
[10] S.B. Wang, W.G. Huang, Z.K. Zhu, Transient modeling and parameter identification based on wavelet and correlation filtering for rotating machine fault
diagnosis, Mech. Syst. Signal Process. 25 (2011) 1299-1320.
[11] ZK. Zhu, R.Q. Yan, LH. Luo, Z.H. Feng, E.R. Kong, Detection of signal transients based on wavelet and statistics for machine fault diagnosis, Mech. Syst.
Signal Process. 23 (2009) 1076-1097.
[12] Y.G. Lei, ]. Lin, Z.J. He, M.]. Zuo, A review on empirical mode decomposition in fault diagnosis of rotating machinery, Mech. Syst. Signal Process. 35
(2013) 108-126.
[13] B.Q. Chen, Z.S. Zhang, C. Sun, B. Li, Y.Y. Zi, Z.]. He, Fault feature extraction of gearbox by using overcomplete rational dilation discrete wavelet transform
on signals measured from vibration sensors, Mech. Syst. Signal Process. 33 (2012) 275-298.
[14] R.Q. Yan, RX. Gao, Rotary machine health diagnosis based on empirical mode decomposition, J. Vib. Acoust. 130 (2008).
[15] J.S. Cheng, D.J. Yu, ].S. Tang, Y. Yang, Local rub-impact fault diagnosis of the rotor systems based on EMD, Mech. Mach. Theory 44 (2009) 784-791.
[16] Y.X. Wang, Z]. He, Y.Y. Zi, A comparative study on the local mean decomposition and empirical mode decomposition and their applications to rotating
machinery health diagnosis, J. Vib. Acoust. 132 (2010).
[17] J. Antoni, Fast computation of the kurtogram for the detection of transient faults, Mech. Syst. Signal Process. 21 (2007) 108-124.
[18] S.G. Mallat, Z.F. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Trans. Signal Process. 41 (1993) 3397-3415.
[19] J. Lin, Feature extraction of machine sound using wavelet and its application in fault diagnosis, NDT&E Int. 34 (2001) 25-30.
[20] W.X. Lai, PW. Tse, G.C. Zhang, T.L. Shi, Classification of gear faults using cumulants and the radial basis function network, Mech. Syst. Signal Process. 18
(2004) 381-389.
[21] B. Samanta, Artificial neural networks and genetic algorithms for gear fault detection, Mech. Syst. Signal Process. 18 (2004) 1273-1282.
[22] K. Grochenig, Describing functions-atomic decompositions versus frames, Monatsh. Math. 112 (1991) 1-41.
[23] S.S.B. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit, SIAM Rev. 43 (2001) 129-159.
[24] G. Davis, S. Mallat, M. Avellaneda, Adaptive greedy approximations, Constr. Approx. 13 (1997) 57-98.
[25] A. Widodo, B.S. Yang, Support vector machine in machine condition monitoring and fault diagnosis, Mech. Syst. Signal Process. 21 (2007) 2560-2574.
[26] Z]. Shen, X.F. Cheng, Z.J. He, Hybrid intelligent fault diagnosis based on adaptive lifting wavelet and multi-class support vector machine, Int. C Wavel
Anal Pat (2010) 415-420. 10.1109/ICWAPE.2010.5576405.
[27] H.Y. Yang, J. Mathew, L. Ma, Fault diagnosis of rolling element bearings using basis pursuit, Mech. Syst. Signal Process. 19 (2005) 341-356.
[28] L.C. Freudinger, R. Lind, M.J. Brenner, Correlation filtering of modal dynamics using the Laplace wavelet, Proc. Soc. Photo Opt. Instrum. 3243 (1998)
868-877.
[29] H. Qiy, J. Lee, ]. Lin, G. Yu, Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics, J. Sound.
Vib. 289 (2006) 1066-1090.


http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref1
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref1
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref2
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref2
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref3
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref3
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref3
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref4
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref4
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref4
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref5
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref5
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref6
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref6
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref7
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref7
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref7
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref8
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref8
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref8
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref9
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref9
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref10
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref10
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref10
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref11
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref11
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref11
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref12
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref12
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref12
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref13
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref13
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref13
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref14
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref15
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref15
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref16
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref16
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref17
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref17
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref18
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref18
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref19
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref19
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref19
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref20
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref20
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref20
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref21
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref21
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref22
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref22
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref23
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref23
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref24
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref24
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref25
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref25
http://dx.doi.org/10.1109/ICWAPE.2010.5576405
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref27
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref27
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref28
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref28
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref28
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref29
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref29
http://refhub.elsevier.com/S0888-3270(15)00585-3/sbref29

	Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis
	Introduction
	Theoretical background
	Atomic decomposition
	Support vector machine

	Time-frequency atoms-driven SVM method
	Analysis on mechanism of roller bearing
	Impact time-frequency dictionary based on characteristics of roller bearing vibration signals
	Oscillatory feature extraction based on sliding window and the correlation coefficient
	Fault recognition based on SVM and time-frequency impact atoms

	Simulated study
	Simulation 1
	Simulation 2
	Simulation 3

	Applications to practical bearing vibration signals
	Case 1
	Experiment introduction
	Feature selection
	Fault pattern recognition
	Discussion

	Case 2
	Experiment introduction
	Features selection
	Fault pattern recognition
	Discussion


	Conclusions
	Acknowledgments
	References




