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Abstract—In most current intelligent diagnosis meth-
ods, fault classifiers of electric machine are built based on
complex handcrafted features extractor from raw signals,
which depend on prior knowledge and is difficult to im-
plement intelligentization authentically. In addition, the in-
creasingly complicated industrial structures and data make
handcrafted features extractors less suited. Convolutional
neural network (CNN) provides an efficient method to act
on raw signals directly by weight sharing and local connec-
tions without feature extractors. However, effective as CNN
works on image recognition, it does not work well in indus-
trial applications due to the differences between image and
industrial signals. Inspired by the idea of CNN, we develop a
novel diagnosis framework based on the characteristics of
industrial vibration signals, which is called dislocated time
series CNN (DTS-CNN). The DTS-CNN architecture is com-
posed of dislocate layer, convolutional layer, sub-sampling
layer and fully connected layer. By adding a dislocate layer,
this model can extract the relationship between signals with
different intervals in periodic mechanical signals, thereby
overcome the weaknesses of traditional CNNs and is more
applicable for modern electric machines, especially under
nonstationary conditions. Experiments under constant and
nonstationary conditions are performed on a machine fault
simulator to validate the proposed framework. The results
and comparison with respect to the state of the art in the
field is illustrated in detail, which highlights the superiority
of the proposed method in industrial applications.

Index Terms—Convolutional neural architecture, dis-
located time series, electric machine, intelligence fault
diagnosis, nonstationary condition.

I. INTRODUCTION

FAULT diagnosis has always been an attractive and criti-
cal task in electric machines due to its ability to reduce
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Fig. 1. Three key steps in traditional fault diagnosis.

maintenance costs and prevent the accidents [1], [2]. As electric
machines are widely used in modern society [3], numerous al-
gorithms and techniques have been proposed for fault diagnosis
of them, which vary from system to system [3]–[7].

According to the current literature, the framework of tradi-
tional fault diagnosis includes three steps: signal acquisition;
feature extraction and dimensionality reduction (DR); and fault
recognition, as shown in Fig. 1 [8], [9]. Data acquisition is
a process of collecting and storing useful data (information)
from targeted physical equipments [10]. The data can be very
versatile and vibration signals are utilized dominantly because
they provide the most intrinsic information of the equipments
[11]. Since the variability and richness of natural data make it al-
most impossible to build an accurate recognition system entirely
via early pattern recognition algorithms, most fault-diagnosis
system are built with a combination of feature extraction and
machine learning algorithms. To extract representative features
from the complex and nonstationary noisy signal, numerous vi-
bration signal processing approaches have been developed such
as statistic analysis, Fourier transform [12], wavelet transform
[13], empirical mode decomposition (EMD) [14], and sparse
representation [15], which is developed recently. To increase
the performance of the diagnosis system, DR methods should
be employed to deal with high-dimensional data such as princi-
ple component analysis and local discriminant analysis [16]. In
the last step, the extracted features are used to train the machine
learning models such as support vector machine (SVM) [4], ar-
tificial neural networks (ANN) [17], hidden Markov model [18],
and k-nearest neighbor [19].

Well developed and diverse as traditional intelligent diagnosis
systems are, they still suffer from three main weaknesses. First,
the original signal cannot be used to train the traditional artificial
intelligent model directly. Therefore, it is important to design
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a feature extractor, which can represent original signal by low-
dimensional vectors that can be easily matched or compared.
However, during feature extraction process, much information
will be lost. And the feature extractor contains most of the prior
knowledge and is often designed entirely hand crafted [20]. As
a result, the diagnosis accuracy is largely depended on prior
knowledge and the ability of designer. Second, to come up with
appropriate set of features, the precise physical model and a
comprehensive understanding of the fault are needed. In addi-
tion, feature extractor is specific to the task, therefore it must
be redesigned for every new problem. However, with the rapid
development of mechanical manufacturing industry, mechani-
cal models have become more and more precise, complex and
automatic, which makes it much more difficult, even impossi-
ble to design a specific and suitable feature extractor for every
diagnosis system. Last but not least, in practical applications,
electric machines are always working under nonstationary con-
ditions. However, because the signals used for classification are
variable as the operating condition changing, the fault diagno-
sis and recognition of electric machines under nonstationary
condition is always a hard nut to crack.

Therefore, to overcome the problems above, a novel frame-
work of intelligent fault diagnosis which is fed with raw infor-
mation is proposed. In this framework, inspired form the work
of LeCun et al. [20], we proposed an improved convolutional
neural network (CNN) architecture based on the characteristics
of mechanical signals, which is called the dislocated time-series
CNN (DTS-CNN). The basic idea behind the proposed DTS-
CNN method is that the periodic fault information between
nonadjacent signals can be extracted by continuously dislocat-
ing the input raw signals. In this framework, the DTS-CNN is
considered as a black box model, and different kinds of faults can
be predicted automatically from a training set of dislocated raw
signals. The reduction of the demand for prior knowledge, phys-
ical model, and human labor makes this diagnosis framework
more robust and adaptive in modern industrial system and so-
phisticated electric machines. And this ability to automatically
learn powerful and proper features will make the mechanical
fault diagnosis system real artificial intelligence and become in-
creasingly important as the amount and kind of industrial system
continue to grow [21].

The rest of this paper is organized as follows. In Section II,
the CNN architecture is described in detail. In Section III, the
proposed DTS-CNN method and the intelligence fault diagno-
sis framework is illustrated. The vibration data of gearbox are
studied by the proposed method in Section IV. Conclusion and
future work of the research are presented in Section V.

II. CNN ARCHITECTURE

Begins with neuroscientific experiments, CNN have been
mainly influenced by Hubel and Wiesel’s early work on the
vision cortex working mechanisms of mammalian brain [22],
[23]. A CNN layer is designed to capture the following three
properties of the primary visual cortex (V1).

1) V1 has a two-dimensional (2-D) structure mirroring the
structure of the image in the retina.

Fig. 2. Sparse connectivity: (a) three inputs affect s3 when s is formed
with a kernel of width 3; (b) all inputs affect s3 when it is not a sparse
connection.

Fig. 3. Local receptive field of the units in the deeper layer.

2) A simple cell’s activity can be characterized by a linear
function of the image in a small region.

3) V1 also contains many complex cell that are invariant to
small shifts in the position [24].

Inspired by these properties, CNNs are introduced and suc-
cessfully used by LeCun et al. [20], [25], [26], which are
powerful bioinspired hierarchical multilayered neural networks
that combine three architectural ideas: sparse connectivity (or
local receptive fields), shared weights, and pooling (spatial
subsampling).

A. Sparse Connectivity

Traditional ANNs use a matrix multiplication to describe the
interaction among each input unit and each output unit. How-
ever, CNN exploits sparse connectivity by making the kernel
smaller than the input and enforcing a local connectivity pattern
among neurons of adjacent layers. In other words, the inputs
of hidden units in layer m are from a subset of units in layer
m − 1, which can be graphically illustrated in Fig. 2 [24].

Even though direct connections in a CNN are sparse, units in
the deeper layers may indirectly interact with a larger portion
of the input, as shown in Fig. 3. By sparse connectivity, the
complicated interactions between units can be described more
efficiently, and the overfitting risk can also be reduced due to
the less parameters.

B. Shared Weights

Shared weights refers to using the same parameters for more
than one function in a model. In traditional ANN, each weight
matrix is multiplied by one element of the input and used only
once. In a CNN, each kernel (or weight matrix) is used across
the entire visual field. The shared weights are learnt only once
instead of learning a separate set of weights for every position
[24], [27].
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Fig. 4. Operating mechanism of shared weights and local receptive
field.

The graphical depiction of how shared weights work is shown
in Fig. 4. For example, suppose the features have been learnt on
a × b patches, and there is an m × n image. To get the convolved
features, we need to convolve the learned a × b feature detector
with every a × b region in the image. And this would result in a
(m − a + 1) × (n − b + 1) array of convolved features.

For the multilayered input and multilayered kernel, for ex-
ample a d × m × n input and a c × a × b kernel matrix, the
convolution operation will be more complicated, which can be
summed up in three steps:

1) use a kernel to convolute with every layer of the input
and result in a d × (m − a + 1) × (n − b + 1) matrix;

2) sum up the results of the matrix and a 1 × (m − a + 1) ×
(n − b + 1) matrix will be obtained;

3) repeat the first two steps for each kernel. As a result, the
output will be a c × (m − a + 1) × (n − b + 1) array of
feature maps.

This step can be described by a convolution kernel and
requires m × n × (a + 1) × b floating point operations (one
addition per output pixel), which would take m × n × m × n
floating point operations in a dense ANN. Therefore, convolu-
tion is an extremely efficient way that apply the same linear
transformation of a local region across the entire input to de-
scribe transformations.

C. Pooling

There are two main stages in CNN. In the first stage, several
convolutions are performed in parallel. Another important stage
of CNN is pooling, which is a form of subsampling. A pool-
ing operation is replacing the output of the convolution layer
with a summary statistic. The most commonly used in CNN
is max-pooling, which partitions the input image into a set of
nonoverlapping rectangles and for each such subregion outputs
the maximum value [27]. Therefore, pooling is useful in CNN
for the following two reasons.

1) It makes the representation become invariant to small
translation of the input. That is, if we translate the input

Fig. 5. Example of pooling invariance.

by a small translation or rotation, the values of pooling
outputs will not change.

2) By reporting summary statistics for pooling regions
spaced k pixels apart rather than 1 pixel apart, the fi-
nal pool has a smaller size. Therefore, it reduces compu-
tation for upper layers and improves the computational
efficiency of the network.

Not only the high computing efficiency, but also the invariance
to local translation can be a very useful property in industrial
signal processing because we care more about whether some
feature is present than exactly where it is. For example, the
Laplace impulse signal is one of the typically vibration response
of a bearing fault [4]. In fault diagnosis systems, what we need is
to detect the impulse component no matter how the initial phase
or operating environment change. As shown in Fig. 5, if each
of these filters drive units that appear in the same max-pooling
region, then the pooling unit will detect the same value in any
initial phase or fault types.

Sparse convolutional layer and max-pooling layer are at the
heart of the CNN. In lower layers, CNN composed by alternating
the convolutional layer and pooling layer. After extracting the
convolutional features, the upper layers are consists of full-
connected layer to classify different inputs.

III. PROPOSED DIAGNOSIS FRAMEWORK

A. Dislocated Time Series Convolutional
Neural Architecture

CNN has been used successfully in many different appli-
cations, such as handwriting recognition [25], [28], machine-
printed character recognition [29], and face recognition [30],
[31]. For the purpose of those recognitions, the correlation
and information in a local neighbor region are requiring more
thought. Therefore, state-of-the-art CNNs mainly focus on the
feature extraction and pattern recognition in a local region.

However, mechanical signal is different from image signal.
Because rotating machineries abound in electric machines, the
collected signals are often time series signals with strong period-
icity and deep correlations among different time points. There is
also a lot of valuable information hiding behind these periodicity
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Fig. 6. Typical vibration response of a surface fault.

and correlations. For example, it is known that the components
of impact vibration are divided into two parts, as shown in Fig. 6
[4]. The first one is the vibration of low frequency with period
of Tc , which will generate repeated impacts due to the passing
of the rolling elements over the defect. The other one is the
vibration of high frequency with period of Tn , which is caused
by the impact. If we just consider the local region in a period,
the result will be easily influenced by random factor. It is more
considerable to compare the relationship between the amplitude
of an impulse point and another impulse point. Of course, am-
plitude correlation is only a drop in the ocean of the information
behind the relationship between mechanical signals. Therefore,
it will make full use of all information in the signal if we also
consider the relationship between signals in different locations.

To overcome the limitations of CNN and make it more suit-
able for industrial applications, a DTS-CNN architecture is pro-
posed according to the characteristics of mechanical signal in
this paper. In the DTS-CNN architecture, instead of using the
measured signal as the input of CNN to convolve with kernel
directly, we add another layer to dislocate the input. Suppose
the input signal is x(t), which is a time series signal, then the
output of dislocated layer can be represented as

D(m, :) = x(tm1 : tm2) (1)

where

tm1 = 0.5m(m + 1) × k

tm2 = tm1 + n

m = 0, 1, 2, . . . (2)

where D is the output matrix of dislocated layer, which is an
m × n matrix, k is the dislocate step, and n is the length of the
intercepted signal from original signal. That is, we cut out n
points from row signal as a sample in each dislocate operation.
m is the sample size of D. It means that the raw signal was
dislocated for m times, and we will obtain an m × n matrix as
the output of dislocated layer. The graphical demonstration is
shown in Fig. 7.

From Fig. 7, it can be seen that we extract a signal with a length
of n each time. Then, translate k distance and extract another
signal with the same length. Next translating 2 × k distance,
next 3 × k. In the ath operation, we translate a × k distance
and extract another signal. Then, combine the extracted signals
into the matrix D. The main parameters in DTS-CNN are m,
n, and k. n is comparatively easy to determine, just make sure
it is bigger than the length of one period signal. m influences
the effect of the proposed method. The larger the m is, the

Fig. 7. Detail operation in dislocated layer.

more the layers D1 layer generates, therefore, the more precise
the results are. However, on the other hand the computational
capacity increases. Fortunately, m does not have to be very large
in most cases if the value of k is proper. There is no accurate
way to determine the value of k. Considering mechanical signal
is highly cyclical, it would be better if k or its multiple (smaller
than m × k) is the multiple of period. Actually, according to the
experiments, the result of DTS-CNN is robust for the choice of
k if it is multiple of period.

The specific architecture of DTS-CNN applied in this paper is
graphical illustrated in Fig. 8. There are three axis in the cubes,
as shown in Fig. 8. x-axis and y-axis represent the width and
height of the feature map, respectively; z-axis represents the
number of kernels. Each kernel, like a filter, slides on the input
and produces one feature map. Thus, each feature map can be
regarded as the response of a certain pattern. Often there are
several filters in one layer, so each layer produces a 3-D out-
put contains several feature maps as much as the filters. In the
architecture shown in Fig. 8, two convolution layers are added
first. The description of convolution kernel 16@3 × 4 repre-
sents that there are 16 kernels with the size of 3 × 4. Then, a
pooling operation is applied in the following S4 subsampling
layer. This leads to the same number of C3 feature maps with a
half-spatial resolution. Then, convolution kernels with the size
of 32@3 × 4 are applied in C5 and C6, respectively. Next, a
maxpooling layer S7 is applied with a 2 × 2 pooling region. Fi-
nally, a fully connected neural network is added. We first flatten
the output of S7 to a 1-D feature maps in F8. Then, the output
of F8 is used as the input of F9 to dense the feature maps and
reduce the dimension. Suppose the number of hidden units in F9
is a, therefore, an a × 1 vector is used as the input of softmax
classifier and the final output is the number of categories. In
the proposed architecture, dislocated layer and CNN are used
for feature extraction. Some strategies such as sparse connec-
tivity, shared weights, and drop out operation endow DTS-CNN
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Fig. 8. Architecture of DTS-CNN. For the cubes: x-axis and y-axis represent the width and the height of the feature map, respectively; z-axis
represents the number of kernels.

architecture with the ability to reduce the risk of overfitting [32],
[33]. Because the number of units is declined layer by layer in
the last two layers, F8 and F9 are also two-feature reduction lay-
ers, whose dimensions are reduced during the mapping process.
Since both the dislocated layer, CNN, and the full-connected
network are belong to the overall network, the optimization ob-
jective of the objective function and iterative algorithm are the
connection weights. That is, weights of both CNN and softmax
classifier are trained together in order to minimize the error be-
tween the output of the network and label of the sample for
better classification accuracy. In order to achieve better classifi-
cation effect, the feature extraction layers of the deep learning
framework are trend to eliminate the similarities and keep the
differences between the signals of different classes. Therefore,
most of the redundant or useless information of the features has
already been reduced when the features are used as the input
of softmax classifier. However, the number of input feature for
softmax classifier will influence the performance of the pro-
posed method and increase the risk of overfitting, because there
is no DR step between CNN and softmax classifier. Although
the influence can be reduced by the strategies of sparse connec-
tivity, shared weights, and drop out operation, the architecture
of the DTS-CNN and the input feature dimensionality of soft-
max still should be designed carefully to ensure the best effect.
Moreover, since the DTS-CNN method is designed based on
deep learning theory, it will be more advantageous for industrial
big data.

B. Parameters Optimization Algorithm

In the DTS-CNN method, the rectified linear units (ReLU)
function is used as an activation function instead of traditional
activation function, because in terms of training time with gradi-
ent descent, the saturating nonlinearities sigmoid or tanh func-
tion are much slower than the nonsaturating nonlinearity ReLU
function [34]. The ReLU function is defined as

f(z) =

{
0, if z < 0

z, otherwise.
(3)

Then, back-propagation (BP) algorithm is used to learn the
connective weights. According to the ReLU activation function,
we define the cost function of a single sample (x(i) , y(i)) to be

J(W, b;x(i) , y(i)) =
1
2
‖hW,b(x(i)) − y(i)‖2 (4)

where (x(1) , y(1)), . . . , (x(m ) , y(m )) is training sets with m sam-
ples. The overall cost function is given as

J(W, b) =
1
m

m∑
i=1

J(W, b;x(i) , y(i)) +
λ

2

nl −1∑
l=1

sl∑
i=1

sl + 1∑
j=1

(W (l)
ij )2

(5)
where W

(l)
ij is the weight associated with the connection be-

tween unit j in layer l and unit i in layer l + 1. sl is the number
of units in layer l. The first term in J(W, b) is an average sum-
of-squares error term. The second term is a regularization term.
λ is weight decay parameter. Based on (5), the gradient term of
output layer (the nl th layer) can be calculated as

δ(nl ) = −(y − anl ) × f ′(znl ) (6)

where al
i is the output of the ith unit in lth layer and l =

1, 2, . . . , nl . Therefore, the gradient term of the l = nl − 1,
nl − 2, . . . , 2 hidden layer can also be calculated

δ(l) = [(W (l))T δl+1] × f ′(zl). (7)

Then, we can iteratively update the parameters by the stochas-
tic gradient descent algorithm. First, set �W

(l)
(1) = 0,�b

(l)
(1) = 0

for all layers. Then, repeat for i = 1 to m

� W
(l)
(i+1) = �W

(l)
(i) + δ(l+1)(a(l))T (8)

�b
(l)
(i+1) = �b

(l)
(i) + δ(l+1) (9)

where�W
(l)
(i+1) and�b

(l)
(i+1) are the value of�W (l) and�W (l)

at ith iteration, respectively. Update the parameters until the
termination condition is satisfied

W
(l)
(i+1) = W

(l)
(i) − α

[(
1
m

� W (l)
)

+ λW (l)
]

(10)

b
(l)
(i+1) = b

(l)
(i) − α

(
1
m

� b(l)
)

(11)

where W
(l)
(i+1) and b

(l)
(i+1) are the value of W (l) and b(l) , re-

spectively, at the ith iteration. α is the learning step. And the
convolution kernel (namely weights) can be calculated by the
BP algorithm.

To sum up, in the proposed framework, because of the lo-
cal receptive fields and weights sharing strategy, the overfitting
problem in traditional fully connected ANN is mitigated. And
the periodic fault information between nonadjacent signals can
be extracted due to the time series dislocation. The dislocate



LIU et al.: DISLOCATED TIME SERIES CONVOLUTIONAL NEURAL ARCHITECTURE: AN INTELLIGENT FAULT DIAGNOSIS APPROACH 1315

Fig. 9. Experimental setup: (1) induction motor; (2) tachometer;
(3) bearing; (4) shaft; (5) load disc; (6) belt; (7) bevel gearbox;
(8) magnetic load; (9) reciprocating mechanism; and (10) variable speed
controller.

layer can be added in anywhere of a CNN network as the convo-
lution layer and pooling layer. If it is added in the beginning, the
input raw signal will be dislocated. If it is added in the middle
of the CNN network, the feature map will be dislocated.

In addition, DTS-CNN can extract the relationship between
signals in different time series. When a is small, the extracted
signals are close to each other, and the time range is small,
therefore, the features in high rotation speed can be extracted.
Similarly, when the translate distance is large, the extracted
signals are far away from each other, and the time range will
be large, as a result the features in low rotation speed can be
extracted. Due to this structural characteristics of DTS-CNN,
combining with the strong capability to extract local features
of CNN and the invariance to local translation of pooling op-
eration, the proposed method is also suitable for nonstationary
conditions. Therefore, the DTS-CNN is a powerful method that
can overcome the shortcomings of traditional CNNs and extract
high-level features in industrial applications.

IV. EXPERIMENTAL DEMONSTRATIONS

To verify the effectiveness of the proposed method, two ex-
periments on an electric machine fault simulator with different
induction motor conditions were conducted. The first one is op-
erating under nine different conditions with constant speed, and
the second one is operating under six motor conditions with
variable speed.

A. Fault Diagnosis of Induction Motor Under Constant
Rotation Speed

The experiment with constant speed under nine different in-
duction motor conditions were conducted, as shown in Fig. 9.
The vibration signals are acquired by two accelerometers in
vertical and horizontal directions. Fig. 10 shows the location of
sensors in the induction motor and the vertical vibration signals
are used. The vibration data of the simulator under the power
supply frequency of 50 Hz are collected with the sampling fre-
quency of 6400 Hz. In this experiment, nine different conditions
have been simulated. The descriptions of different induction mo-
tor conditions are listed in Table I. There are 35 417 samples
in total; out of which 25 000 samples are selected randomly for

Fig. 10. Location of sensors.

TABLE I
DESCRIPTION OF THE NINE MOTOR EXPERIMENT CONDITIONS

Label Condition Description

1 Broken rotor bar An intentionally broken rotor bar
2 Bowed rotor Rotor bent in center 0.01
3 Faulted bearing One bearing with an inner race fault
4 Unbalanced rotor Intentionally altered rotor caused unbalance
5 Normal motor Healthy, no defect
6 Angular misalignment Displacing one end more than the other
7 Parallel misalignment Displacing bearing same amount each end
8 Low impedance Caused by short circuit of the coil
9 High impedance Caused by open circuit of the coil

TABLE II
NUMBER OF INSTANCES FOR EACH CLASS

1 2 3 4 5 6 7 8 9 sum

Training 2550 2436 2444 2462 2892 3007 3059 2610 3540 25000
Testing 1081 1020 962 957 1239 1249 1222 1171 1516 10417

training and 10 417 samples for testing. The numbers of samples
for each class are shown in Table II.

After acquiring the vibration signals, the DTS-CNN method
is then applied to predict the nine different faults. The length of
one period signal can be calculated as 256 points. Therefore, n
is set to be 512 to make sure it is longer than a period signal.
m is set to be 10. The selection of k is researched due to its
significance and uncertainty. In this experiment, k is set to be 3,
8, 10, 15, and 20, respectively. The recall ratio r and precision
ratio p are used for performance analysis, which are defined as

r =
TP

TP + FN
, p =

TP
TP + FP

(12)

where true positive (TP) is correctly classified as positives
samples, false positive (FP) is misclassified as positives sam-
ples, true negative (TN) is correctly classified as negatives
samples, and false negative (FN) is misclassified as negatives
samples. To permit an individual evaluation of each class and
have a consideration of negative class, the accuracy of each class
is also used for comparison, which can be calculated as

accuracy = 1 − FP + FN
TP + FP + TN + FN

. (13)
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Fig. 11. Recall ratio r with different values of k.

Fig. 12. Precision ratio p with different values of k.

Fig. 13. Accuracy of each class with different values of k.

The results of r and p with different k are shown in Figs. 11
and 12. The accuracy of each class with different values of k is
illustrated in Fig. 13.

First of all, it can be seen from Figs. 11–13 that the DTS-CNN
is a data-driven method that has excellent performance in fault
diagnosis of industrial system. This framework can also learn
the complex, high dimensional, nonlinear feature maps from
the raw signal directly and automatically from the nine different
conditions. Although the accuracy rate is lowest when k = 3
and 8, it is still better than 97%.

In addition, with different values of k, DTS-CNN shows sim-
ilar results and outstanding accuracy rate. When k = 3 and 8,
the results are worse, because when k is too small, the dislocated
distance will also be short. Therefore, signals of each row in D
matrix overlap too much, the information in D is not sufficient.
As shown in Figs. 11– 13, when k = 10, 15, and 20, both the
recall ratio r and precision ratio p are higher than 98.5%, the
accuracies are better than 99.8%, which are close to the perfect
classification results if the random factor is ignored. We will
only discuss the results of these three conditions. Fig. 11 shows

that except class 5 (normal motor), r of other classes are all bet-
ter than 99.5%, which means that there are less than 5 samples
in 1000 test samples which are misclassified. These misclassi-
fied samples can be caused by noise, environment mutation, or
other random factors and will not expected to have impact on
the final results. The recall ratio of class 5 is 99.35%, 98.78%,
and 98.87%, which are relatively lower than other classes. It
can be found that this discrepancy is caused by some confusion
of class 5 and class 6. As a result, in Fig. 12, k of class 6 is
the smallest because some samples belong to class 5 are error
classified to class 6. As from Fig. 11, p of other classes are better
than 99.44%. After investigation, we found that the confusion of
class 5 and class 6 is mainly caused by the installation accuracy
and assembly error of the test rig. There is a flexible coupling
between the output shaft of the motor and shaft 4 shown in
Fig. 9. After several assemble and dismantle processes during
the experiment, a slight misalignment will exist inherently in
the test rig even with a health motor.

In this experiment, k is determined to be 10. The confusion
matrix is shown in Table III. The number from 1 to 9 in the
first column represents the test data labels in nine different con-
ditions. The number from 1 to 9 in the first row represents the
classification result of test data. For example, the number 1020
in the second row represents that 1020 test samples which la-
beled 2 (the number in first column is 2) are classified to label
2 (the number in first row is 2), which means that the 1020 test
samples are classified correctly. On the other hand, the number
2 in the first row represents that two test samples which labeled
1 is misclassified to label 4. To sum up, the diagonal elements in
Table III represent the number of test sets which are classified
correctly, and the wrongly classified numbers in other areas are
underlined. In addition, the last three columns show recall ratio
r, precision ratio p, and the accuracy of each class, respectively.

To illustrate the advantage of the DTS-CNN, the same vi-
bration signal is processed using two state-of-the-art methods:
traditional CNN, wavelet packet and SVM (WPT-SVM). Be-
cause WPT-SVM is widely used for fault diagnose, and tradi-
tional CNN is the DTS-CNN approach without dislocate layer.
Therefore, the advantages of dislocate layer can be analyzed by
the comparison of DTS-CNN and CNN methods. In traditional
CNN, sections of original signal were used as the inputs with the
length of 512 points. In WPT-SVM, the vibration signals of each
class were divided into signal sections with 2048 points so that
wavelet packet transform can achieve better performance. Each
signal sample was decomposed by Symmlet 8 wavelet packet
and the degree of frequency partition is set to be 4. Therefore,
16 reconstructed signals can be obtained in different frequency
bands. The energy proportions of these reconstructed signals
were used as features, and the features of all samples were
used as the inputs of SVM. Radial basis function is used as
the kernel function for the SVM implementation, which can be
represented as

κ(xi, xj ) = exp(3.7321‖xi − xj‖2). (14)

To deal with the multiclass classification problem, the one-
versus-one strategy is applied in SVM. The comparison results
are shown in Figs. 14–16.
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TABLE III
DTS-CNN RESULTS WHEN k = 10

Conditions 1 2 3 4 5 6 7 8 9 r p Accuracy

1 1079 0 0 2 0 0 0 0 0 99.81% 99.72% 99.95%
2 0 1020 0 0 0 0 0 0 0 100% 100% 100%
3 0 0 962 0 0 0 0 0 0 100% 100% 100%
4 3 0 0 954 0 0 0 0 0 99.69% 99.69% 99.94%
5 0 0 0 1 1231 7 0 0 0 99.35% 99.43% 99.86%
6 0 0 0 0 7 1242 0 0 0 99.44% 99.44% 99.87%
7 0 0 0 0 0 0 1219 3 0 99.75% 100% 99.97%
8 0 0 0 0 0 0 0 1171 0 100% 99.74% 99.97%
9 0 0 0 0 0 0 0 0 1516 100% 100% 100%

Fig. 14. Recall ratio r of the three classification methods.

Fig. 15. Precision ratio p of the three classification methods.

It can be seen from Figs. 14–16 that performance of DTS-
CNN is the best and the classification accuracy of every category
is better than 99%. And the confusion of normal motor and an-
gular misalignment also appears in CNN but is more serious. It
is because by adding a dislocate layer, DTS-CNN can extract
more profound characteristics of signals and find the essential
difference between the two classes. Traditional CNN can only
extract the features in an adjacent region and ignore the rela-
tionship between nonadjacent signals, therefore some valuable
information is missed. In addition, it can also be found that the
results of WPT-SVM mainly suffer from misclassification of
classes 1, 4, and 9. Because WPT-SVM is a classifier at fea-
ture level and the basic idea is the difference between frequency
band energy. Therefore, a lot of information will be lost in the
process of feature extraction. The results illustrate that the fre-
quency band energy distribution of these three classes is similar
and therefore WPT-SVM cannot distinguish them. By contrast,

Fig. 16. Accuracy of each class via the three classification methods.

Fig. 17. Accuracy of each class when the signals are added with noise.

DTS-CNN performs better than WPT-SVM and CNN, because
it is a classifier at signal-level that uses signals as the input di-
rectly, instead of using extracted features as the inputs, which
can keep all information of the signals. And features can be
learnt by the proposed framework at multiple levels from raw
data automatically and directly, without depending completely
on human-crafted features. Consequently, release researchers
from the complex feature extraction algorithms and reduce the
demand of prior knowledge.

To further illustrate the reliability and robustness against noise
of DTS-CNN, the original experiment signals are added with
three different degree of noises and analyzed by the proposed
method. n 1 is the noise with 0.1 mean and 1 variance, n 2 with
0.2 mean and 1 variance, n 3 with 0.3 mean and 1 variance,
with energy corresponding to about 0.1, 0.2, and 0.3 times,
respectively, of the original signal energy. The accuracy of each
class is shown in Fig. 17. It can be seen that the accuracy of
each class is still better than 99.94%, even though considerable
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TABLE IV
NUMBER OF INSTANCES FOR EACH CLASS

1 2 3 4 5 6 Sum

Training 993 1020 972 1082 955 978 6000
Testing 301 274 297 312 289 291 1764

noises are added. And for one test sample, the running time of
the classification procedure by DTS-CNN is 6.04 ms. Therefore,
it can be concluded that either the traditional CNN or WPT-SVM
has its limitations and cannot be suited under every condition,
whereas DTS-CNN has strong robustness, real time capability,
and excellent performance.

B. Fault Diagnosis of Induction Motor Under
Nonstationary Condition

In practical applications, the working condition of an electric
machine is always nonstationary. However, the fault diagno-
sis and recognition of the electric machine under nonstationary
condition is always a difficult issue and the research is scanty
in this area. Because the signals used for classification are vari-
able as the operating condition change, consequently makes it
harder for fault identification. Studies about the variable work-
ing conditions mostly focus on feature extraction of a section
signal, which is specific to the task and time consuming. And
these features often cannot used for classification because they
are changing over time. In this paper, the proposed DTS-CNN
method shows its advantages in dealing with nonstationary sig-
nals intelligently.

The experiment with the nonstationary condition was con-
ducted on the same fault simulator. The experiment setup is
shown in Fig. 9. Six induction motor were conducted, namely,
bowed rotor, broken rotor bar, faulted bearing, normal motor,
high impedance, and unbalanced rotor, as listed in Table I. The
sample frequency is 12 800 Hz. The rotation speed is controlled
manually, which ranges from 0 to 3600 r/min. The vertical vi-
bration signals are processed using the proposed framework.
There are 6000 samples used for training and 1764 samples for
testing. The numbers of samples for each class are shown in
Table IV. Fig. 18 shows the waveforms of the whole vibration
signals and two local samples which begin at 20 and 27 s under
six conditions.

In this experiment, n is set to be 512, and m is set to be
10 as with the previous case, and k is set to be 1, 3, 5, and 8.
The results with different k are shown in Table V. It can be
found that the four overall accuracies are all larger than 92%
even if the rotation speed varied greatly. In this experiment, the
best result is obtained when k = 3 because the rotation speed is
changing from 0 to 3600 r/min, therefore the vibration signal is
also changing dramatically. As mentioned before, k should be
small when the signal changes greatly. When k = 3, considering
both n and the dislocate distance, the length of a sample is
647 points.

For comparison purpose, a traditional CNN is also used to
process the same signal. The results of the two methods are

Fig. 18. Vibration signals of the motor under six conditions. (a) bowed
rotor, (b) broken rotor bar, (c) faulted bearing, (d) normal motor, (e) high
impedance, and (f) unbalanced rotor. The left is the whole signal and the
right is the vibration signal of a sample.

TABLE V
DTS-CNN RESULTS WITH DIFFERENT k UNDER NONSTATIONARY

CONDITION

Condition 1 2 3 4 5 6

k = 1 (accuracy = 94.10%):

r 95.85% 89.03% 95.45% 95.68% 94.36% 94.60%
p 93.17% 95.95% 97.67% 87.08% 96.17% 97.05%
accuracy 98.02% 97.34% 98.98% 96.60% 98.58% 98.70%

k = 3 (accuracy = 96.32%):

r 99.34% 98.91% 96.97% 93.59% 95.85% 93.47%
p 93.15% 92.81% 98.29% 96.37% 98.58% 99.27%
accuracy 98.64% 98.64% 99.21% 98.24% 99.09% 98.81%

k = 5 (accuracy = 93.20%):

r 91.80% 91.67% 94.86% 93.81% 93.05% 94.04%
p 85.37% 95.16% 97.19% 92.38% 95.63% 95.04%
accuracy 95.86% 97.79% 98.70% 97.45% 98.36% 98.24%

k = 8 (accuracy = 92.86%):

r 90.16% 88.00% 98.15% 94.48% 93.24% 93.04%
p 89.58% 94.90% 95.68% 90.03% 95.83% 92.36%
accuracy 96.49% 97.39% 99.04% 96.88% 98.19% 97.73%

shown in Table VI. The overall accuracies of the two methods are
83.39% (CNN) and 96.32% (DTS-CNN). In this experiment, we
did not show the comparison results of other methods because
most fault recognition methods are not suitable for variable
working condition.

It can be observed from Fig. 18 that the vibration signals
are constantly changing, sample 2 is only 7 seconds later than
sample 1, but the signals are much different from the signals
of sample 1. From Table VI, it can be found that the results of
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TABLE VI
COMPARISON RESULTS OF CNN AND DTS-CNN

Condition 1 2 3 4 5 6

CNN (accuracy = 83.39%):

1 219 75 6 11 3 12
2 54 207 0 13 0 8
3 3 7 259 4 2 1
4 9 16 6 280 0 1
5 11 5 1 4 263 2
6 23 10 1 5 0 243
r 67.18% 73.40% 93.84% 89.74% 91.96% 86.17%
p 68.65% 64.69% 94.87% 88.33% 98.13% 91.01%
accuracy 88.27% 89.34% 98.24% 96.09% 98.41% 96.43%

DTS-CNN (k = 3, accuracy = 96.32%)

1 299 0 0 1 1 0
2 2 271 0 1 0 0
3 2 2 288 4 0 1
4 6 12 1 292 1 0
5 3 1 4 3 277 1
6 9 6 0 2 2 272
r 99.34% 98.91% 96.97% 93.59% 95.85% 93.47%
p 93.15% 92.81% 98.29% 96.37% 98.58% 99.27%
accuracy 98.64% 98.64% 99.21% 98.24% 99.09% 98.81%

CNN are mainly influenced by misclassification of classes 1, 2,
and 6. Because classes 1, 2, and 6 are all mechanical failure,
and they all have strong periodicity. In addition, both the bowed
rotor and the broken bar can cause unbalance, therefore these
three conditions are influenced by small unbalance. And from
Fig. 18, it can be observed that these three signals have similar
local features. Therefore, these three conditions are similar and
it is reasonable for CNN to confuse them. On the contrary, the
DTS-CNN method still can get excellent effect under such non-
stationary conditions and performs much better than CNN in the
classification of every category, as shown in Table VI. And the
overall accuracy of DTS-CNN is also increased by more than 12
percentage points. Because in the practical industrial applica-
tions, raw information of electromechanical systems has strong
local structure. Compared with traditional fault diagnosis meth-
ods, the DTS-CNN method can enforce on the extraction of local
features by restricting the receptive fields of hidden units to be
local. And the performance of the fault in an electric machine
is mostly cyclical due to the rotating components. Therefore,
the relationship of signals between different intervals can be as
helpful as the adjacent signals. By the DTS-CNN method, in-
formation and correlations between different time points can be
extracted by means of dislocating, no matter whether they are
border or not. Furthermore, signal in a period is always similar
with another period in a short time due to its strong periodicity.
By changing the length of dislocation (different times of k),
richer information can be extracted between different locations
in their period from the raw signal. And due to the deep archi-
tecture, the framework can learn complex, high dimensional,
non-linear feature maps from large collections of train datasets.
As a result, benefit from the specific structure, DTS-CNN shows
superior performance in fault recognition under nonstationary
conditions, which is always be a tough nut. From Tables II
and IV, it can also be found that the testing samples are large
enough in the two experiments to demonstrate the generalization

of the proposed method. Therefore, the DTS-CNN is a powerful
fault diagnosis method for large testing samples in nonstationary
conditions.

V. CONCLUSION

A new framework (DTS-CNN) has been presented for fault
diagnosis of electric machines. Benefit from the dislocated time
series operation in dislocate layer (D1), the DTS-CNN not only
keeps the advantages of CNN, but also solves the inapplicability
of CNN for mechanical periodic signal. The critical features of
DTS-CNN are presented as follows.

1) The proposed method is fed up with raw signals directly
and with less dependence on prior knowledge. Compared
with traditional diagnosis methods, the proposed frame-
work is operated as a black box and liberates human labor
from designing different feature extractors. Moreover, the
proposed framework is built based on deep network for
industrial big data, which means that its performance is
increasing with the increase of samples.

2) The overfitting problem can also be mitigated because
of the sharing weights and sparse connectivity. Due to
the dislocated time series operation in the dislocate layer,
both the high-level complicated local and holistic features
can be extracted intelligently. According to the experi-
ments verification, it also shows excellent performance
in nonstationary conditions in mechanical systems and
strong generalization ability for large testing samples.

3) There are three main parameters in the application of
DTS-CNN: m, n, and k and the selection of k will decide
the scope of D1 and the final results. If signals changes
quickly, k should be small; otherwise k should be large.
There is no parameter optimization methods for k yet
and it needs further research. In this experiment, k is
determined by comparing the results with different k.
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