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Simultaneous Bearing Fault Recognition and
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Abstract—Fault diagnosis and remaining useful life (RUL)
prediction are always two major issues in modern indus-
trial systems, which are usually regarded as two separated
tasks to make the problem easier but ignore the fact that
there are certain information of these two tasks that can
be shared to improve the performance. Therefore, to cap-
ture common features between different relative problems,
a joint-loss convolutional neural network (JL-CNN) archi-
tecture is proposed in this paper, which can implement
bearing fault recognition and RUL prediction in parallel by
sharing the parameters and partial networks, meanwhile
keeping the output layers of different tasks. The JL-CNN
is constructed based on a CNN, which is a widely used
deep learning method because of its powerful feature ex-
traction ability. During optimization phase, a JL function
is designed to enable the proposed approach to learn the
diagnosis–prognosis features and improve generalization
while reducing the overfitting risk and computation cost.
Moreover, because the information behind the signals of
different problems has been shared and exploited deeper,
the generalization and the accuracy of results can also be
improved. Finally, the effectiveness of the JL-CNN method is
validated by run-to-failure dataset. Compared with support
vector regression and traditional CNN, the mean-square-
error of the proposed method decreases 82.7% and 24.9%,
respectively. Therefore, results and comparisons show that
the proposed method can be applied for the intercrossed
applications between fault diagnosis and RUL prediction.

Index Terms—Bearing, deep learning, fault diagno-
sis, joint-loss (JL) learning, remaining useful life (RUL)
prediction.

I. INTRODUCTION

ROLLER bearings are widely used in industrial fields,
whose reliability has always been a concern in many me-

chanical systems like aerospaces, wind turbines, and vehicles.
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Due to the tough operation conditions, bearing failures often
happen, which can lead to catastrophic consequences. There-
fore, the need for improving performances in practical sys-
tems, in terms of higher reliability and productivity, has necessi-
tated more and more applications of bearing fault diagnosis and
remaining useful life (RUL) prediction systems [1], [2].

Fault diagnosis is a process of determining fault presence in
machinery as early as possible and identifying kinds, locations,
and degrees of faults, while RUL prediction is a process us-
ing prediction methods to forecast the future performance of
machinery and obtain the time left before machinery loses its
operation ability [3], [4]. In the literature, most works reported
focus on fault diagnosis, which mostly includes two stages:
feature extraction and fault recognition [5], [6]. Statistical indi-
cators, wavelet transform [7], spectrum kurtosis [8], and sparse
representation [9], [10] are all widely applied feature extrac-
tor, which are followed by machine learning methods for fault
recognition, such as support vector machine [11] and artificial
neural network (ANN) [12]. Specifically, many neural networks
have been developed for fault diagnosis, including multilayer
perceptron neural network [13], generalized regression neural
network [14], probabilistic neural network [15], self-organizing
map [16], and recurrent neural network [17]. Recently, deep
learning also provides an end-to-end approach for fault diag-
nosis to enable a hierarchical nonlinear learning of high-level
features built on top of low-level features to discriminate differ-
ent conditions [18]. It has been successfully applied in damage
localization in plate-like structures [19]–[21], fault diagnosis
of motors [22], bearings [23], and other important components
in industrial systems. Jiao et al. [24] proposed a deep coupled
dense convolutional network for intelligent fault diagnosis. A
novel deep learning network by multiscale inner product with
locally connected feature extraction is proposed by Pan et al.
for intelligent fault detection [25]. Han [26] proposed adver-
sarial learning framework in deep convolutional network for
intelligent diagnosis of mechanical faults.

In practical engineering, fault diagnosis alone is not enough
to guarantee the security of industrial systems. RUL predic-
tion is also needed to make the maintenance plan in advance.
The principle of predictive maintenance is to predict the RUL
based on condition monitoring information and make optimal
maintenance decisions before the breakdown of equipment [27].
Approaches to prognostics can be categorized broadly into
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model-based, data-driven, and hybrid methods [28], [29].
Model-based methods are set up mathematical or physical mod-
els to describe the degradation process of a machine, and update
model parameters using measured data. The commonly used
models include the exponential model [30], the Winner process
model [31], the Gaussian mixture model [32], etc. However, the
requirements of prior knowledge to estimate parameters, and
the uncertainty due to the assumptions and simplifications may
pose significant limitations on this approach. To address this
problem, data-driven method is proposed, which utilize moni-
tored operational data related to system health. Machine learn-
ing techniques have been widely used in data-driven methods,
such as support vector regression (SVR) [33], [34], ANN [35],
[36], hidden Markov models [37], [38], and Bayesian networks.
Hybrid method is usually the combination of the two aforemen-
tioned methods that are applied to prognostic tasks [39], [40].
However, though fault diagnosis techniques have been well de-
veloped, there are few research works about RUL prediction.
This is not only due to the much more difficult prognosis mod-
els and techniques, but also because it is hard to acquire the life
test data.

With the development of industrial requirements, demands of
both fault diagnosis and RUL prediction are increasing rapidly.
On one hand, when fault diagnosis is implemented, because
most machines cannot be halted immediately, RUL prediction
is also needed to give a basic idea of how long could the machine
operate. On the other hand, when predict RUL, if the failure type
is known in advance, then the corresponding measurements or
maintenance can be prepared earlier to decrease the downtime
and increase production.

In the literature, almost all methods deal with these two tasks
separately. That is, if both diagnosis and prognosis are needed
in an industrial system, then two models are constructed. It is
plausible because the problem can be much easier, and the re-
sults can also be obtained. However, to some degree, there are
some commonalities and inherent correlation between these two
tasks that they both implement the diagnosis or prognosis task
by extracting faulty information and comparing with baselines.
Therefore, it can be inferred that there is some certain informa-
tion that can be shared in these two research methods, which
has been ignored by the previous methods. These two problems
are relative and can be connected by one or several share rep-
resentations. If we deal with these two problems separately as
usual, not only will the method be time-consuming and costly,
but also may waste a lot of associated information between these
two problems that can be used for both tasks, thus reduce the
accuracy of results.

Therefore, to improve the performances of both the diagnosis
and prognosis methods without increasing the computation and
labor needs, and take full advantage of the valuable experimental
signals, a joint-loss convolutional neural network (JL-CNN)
architecture for simultaneous bearing fault diagnosis and RUL
prognosis is proposed. The major novelties and contributions of
this paper can be summarized in four aspects.

1) First, an intelligent fault diagnosis and RUL prediction
framework is proposed in an end-to-end way, which
can learn features adaptively from complex mechanical
data and use those features for condition diagnosis and

prognosis. Therefore, no predefined features are required,
which not only reduces the reliance on prior knowledge,
but also liberates the labor spent on developing sensitive
and robust features.

2) By sharing the parameters and partial networks, mean-
while keeping the output layers of different tasks, the
proposed method can recognize faults and predict RUL
simultaneously, at the same time reduce the overfitting
risk and computation cost. The information behind the
signals of different tasks can also be shared and exploited
deeper, which can lead to a better generalization and im-
prove the accuracy of both tasks. In addition, the experi-
ment finds that traditional network is more easily getting
local optimum solution, while the JL-CNN can solve this
problem by its specific architecture.

3) RUL prediction is always a challenging task. The data-
driven model, which is constructed only for RUL pre-
diction can be easily overfitting, or converge to a lo-
cal minimal. Therefore, the aforementioned problem can
be solved by adding the loss of classification task, thus
improving the RUL prediction performance.

4) The JL-CNN framework is verified by the practical sig-
nals of bearing run-to-failure tests. The analysis shows
that the JL-CNN could adapt to fault diagnosis task and
RUL prediction task simultaneously. The effectiveness
and superiority are also verified by the comparison with
state-of-the-art methods.

Thus, the proposed method can be applied for the intercrossed
applications between fault diagnosis and RUL prediction with a
better performance.

The rest of this paper is organized as follows. Section II illus-
trates the proposed approach in detail. The proposed JL function
and its training algorithm are described in Section III. In Sec-
tion IV, the proposed method is applied to analyze two bearing
run-to-failure datasets. The results and comparisons with clas-
sical and state-of-the-art methods verify the effectiveness of the
proposed JL-CNN framework. Finally, Section V concludes this
paper.

II. PROPOSED APPROACH

Recent decades have witnessed the rapid development of
deep learning techniques. In essence, deep learning is a mul-
tilayer neural network, which can represent input signals with
high-level and hierarchical features. As one of the most widely
applied deep neural network, CNNs have shown great improve-
ment over hand-crafted features for many problems including
object recognition, face detection, activity recognition. In recent
years, CNNs also have attracted the attention in industrial field
because of their powerful signal represent capability. Based on
the CNN model, a JL-CNN is proposed in this paper by introduc-
ing a JL function in traditional CNN architecture, which can be
applied for simultaneous fault recognition and RUL prediction.

A. CNN

In a CNN, a convolutional layer is used to extract elemen-
tary visual features by convolution operation first. There are two
architectural ideas in convolutional layer: local receptive fields
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(or sparse connectivity) and shared weights. In order to reduce
the memory requirements of the model, improve its statistical
efficiency, and describe the complicated interactions between
units more efficiently, CNN extract features from local recep-
tive fields. Moreover, instead of using each weight matrix only
once in traditional neural networks, each kernel (or weight ma-
trix) is used across the entire input, which is the so-called shared
weights. Convolution is a mathematical operation on two func-
tions and can be defined as the integral of the product of the two
functions after one is reversed and shifted. In CNN, the func-
tion x to the convolution is often referred to as the input and
the function w is the kernel. The convolution formula can be
described as a weighted average of the function x(a) at the time
instant t where the weighting is given by w(a) simply shifted by
amount t. We often use convolutions over more than one axis.
For example, a two-dimensional (2-D) image I is used as input,
therefore the kernel K is also 2-D

z[i, j] = (I ∗K)[i, j] =
∑

m

∑

n

I[i−m, i− n]K[m,n] (1)

where i and j are the width and height of I . m and n are
constants.

After convolution layer, the results z[i, j] are obtained and
used as the input of hidden units. The hidden units are compu-
tational units that take z[i, j] as inputs and hW,b(z) as outputs,
given by

hW,b(z) = f(z[i, j] + b) (2)

where W is the connective weights matrix. b is the bias term.
The function f is called the activation function, which is usually
sigmoid function or tanh function.

Then, the results of hW,b(z) are modified by the pooling layer.
The pooling layer performs a subsampling by replacing the
output of the net at a certain location with a summary statistic of
the nearby outputs. The most commonly used pooling operation
is max pooling, which reports the maximum output within a
rectangular neighborhood. The pooling operation can not only
reduce the resolution of the feature map and the sensitivity of
the output to shifts and distortions, it also shows invariant to
small translation or rotation of the input.

B. JL-CNN Architecture

JL learning is an inductive transfer method that uses the do-
main specific information contained in the training signals of
related tasks by learning the multiple tasks in parallel while
using a shared representation [41]. It can improve learning for
one task by using the information contained in related tasks via
learning tasks in parallel, while using a shared representation.
The information from one task can help the related tasks to be
learned more effectively [42].

Fig. 1 graphically shows two independent neural networks,
which is called the single-task learning. Backpropagation algo-
rithm is used to train each network. Because there is no connec-
tion between them, features of each network cannot be shared
or used to help learn another network. Fig. 2 illustrates a net-
work that has two outputs, each output is corresponding to a
task in Fig. 1. What should be noted here is that these outputs

Fig. 1. Illustration of two single-task models.

Fig. 2. Illustration of a JL model. The black lines represent the
shared parameters. The blue lines represent the exclusive parameters of
task 1. The red lines represent the exclusive parameters of task 2.

can connect all neural units in the hidden layer they shared, as
shown in Fig. 2. Then, independent subnetworks are constructed
after the shared hidden layers, and the corresponding parame-
ters are trained separately. In this way, a JL-CNN architecture is
constructed. In a JL-CNN, backpropagation algorithm optimize
parameters of the two outputs concurrently. Because the bottom
layers are shared with the two tasks, the feature representations
of one task can be also used by other tasks, which can lead to
co-learning. Biologically, JL learning can be regard as being
inspired by human learning. For learning new tasks, we often
apply the knowledge we have acquired by learning related tasks.
In conclusion, the core of the JL-CNN is to train more than one
tasks in parallel and share the feature representations of different
tasks.

There are four architectural mechanisms that contribute to the
wide application and effectiveness of the JL-CNN: implicit data
augmentation, attention focusing, eavesdropping, and represen-
tation bias.

1) Implicit Data Augmentation: The JL-CNN model can in-
crease the sample numbers for training, because there is strong
noise interference in the mechanical vibration signals, and the
noise level varies from different signals. Therefore, learning
one task A may lead to the overfitting problem of task A,
while learning two tasks simultaneously can obtain more general
representations by averaging noise patterns.
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2) Attention Focusing: In industrial systems, the signals that
can be analyzed are usually very complicated and limited. If the
dataset of a task is noisy or limited and high-dimensional, the
model may not distinguish the relevant and irrelevant features.
The JL-CNN architecture can help the model to focus atten-
tion on the important features because other tasks may provide
additional evidence that the features are relevant or not.

3) Eavesdropping: In practical applications, it can be found
that a feature G can be easily learned by task B, but harder to
be learned by task A. This may be because task A interacts with
the features in a more complex way or because other features
are impeding the model’s ability to learn G. The JL-CNN archi-
tecture gives the model the ability of eavesdropping. That is, the
architecture can learn G through task B, then G can be shared
in task A.

4) Representation Bias: Due to the feature sharing idea, the
JL-CNN may bias the model to prefer representations that other
tasks also prefer, which will also help the model to generalize
new tasks as a hypothesis space that performs well for a suf-
ficiently large number of training tasks and will also perform
well for learning novel tasks as long as they are from the same
environment.

Therefore, the JL-CNN architecture allows features devel-
oped in the hidden layer for one task to be used by other tasks,
and also can be used to support several tasks that would not
have been developed, which show the potential in the rapidly
developed industrial systems. For example, usually the vibra-
tion of a roller bearing mainly consists of three components:
the vibration caused by the stiffness change of bearings, the
vibration caused by the installation, and the vibration caused
by the bearing fault. The last component is also the most im-
portant component for fault diagnosis. The roller element runs
between outer race and inner race during the operation. For a
normal bearing, the rolling surface is very smooth, so the vi-
bration caused by fault can be very tiny. For a faulty bearing,
when the roller element runs pass the fault point, an impulse
vibration will be generated. For different fault location (such
as outer race, inner race, roller element), the impulse vibration
will be different. The impulse vibration frequency is the pass-
ing frequency of roller element, which is the most commonly
used fault character frequency for bearing fault diagnosis. Thus,
the identification of the fault character frequency may lead to a
classification problem. At the same time, the RUL of a bearing
is directly related to the gradual expansion of the fault, as well
as the impulse vibration. Therefore, a lot of feature information
can be shared by the fault diagnosis task and the RUL predic-
tion task. On the other hand, as we all know, RUL prediction
is always a challenging task. The data-driven model, which is
constructed only for RUL prediction can be easily overfitting,
or converge to a local minimal. Therefore, the aforementioned
problem can be solved by adding the loss of classification task,
thus improving the RUL prediction performance. Some strate-
gies such as sparse connectivity, shared weights, and pooling
operation also endow the JL-CNN architecture with the ability
to reduce the risk of overfitting.

The JL-CNN architecture applied in this paper is graphically
illustrated in Fig. 3. The structure of the JL-CNN is mainly

constructed based on the classical VGG network [43]. There
are 2048 units in the input layer. The convolutional kernel used
in the first layer of the JL-CNN architecture is 3 × 1@8 and
the convolutional kernels used in other layers are all set to
be 3 × 1@16. The pooling sizes of the max-pooling layers in
this architecture are all set to be 2 × 1. This is because the
feature maps obtained by the convolutional layer with large
convolutional kernel can be obtained by the superposition of
convolutional layers with small convolutional kernel. The large
size of the convolutional kernel can lead to a great increase
of algorithm complexity and computation, the same as pooling
layers. At the same time, even-numbered kernel size will lead
to the difference between input feature maps and output feature
maps [44]. Therefore, the kernel sizes in the JL-CNN are all set
to be small odd number, that is 3× 1. Adam algorithm is used
in this paper for parameter optimization.

III. JL FUNCTION TRAINING

In order to construct the JL-CNN architecture, a JL function
is proposed in this paper. Assume that the input samples are
((x(1) , y

(1)
1 , y

(1)
2 ), (x(2) , y

(2)
1 , y

(2)
2 ), . . . , (x(m ) , y

(m )
1 , y

(m )
2 )),

where the ith sample x(i) = (1, x
(i)
1 , x

(i)
2 , . . . , x

(i)
p ). y

(m )
1 , y

(m )
2

are the labels of the RUL prediction task and classi-
fication task, respectively. The model parameters are
W = (W0,W1,W2, . . . ,Wp)T .

As for RUL prediction problem, mean-square-error (MSE)
loss function is applied for regression as

J1(W ) =
1
m

m∑

i=1

(y(i)
1 − ŷ1

(i))2 (3)

where ŷ1
(i) is the output of the first task network.

Then, for binary fault classification problem, the loss function
J2(W ) is set to be

J2(W ) = − 1
m

m∑

i=1

y
(i)
2 log(ŷ2

(i))

+ (1− y
(i)
2 )log(1− ŷ2

(i)) (4)

where ŷ2
(i) is the output of the fault diagnosis task network.

This loss function is called the cross-entropy loss function.
In this paper, the JL function is constructed by the loss func-

tions of both classification and regression problem as follows:

J(W ) = J1(W ) + λJ2(W ) (5)

where λ is the penalty factor that control the weight of the two
tasks. That is, if λ = 0, the network is a model only for RUL
prediction; if λ =∞, the network is a model only for fault
diagnosis. The suitable selection of the λ may vary from dataset
to dataset. So, λ can be decided by the heuristic method. The
selection of λ in this paper has been discussed in detail in the
case study.

Let z
(l)
i be the total weighted sum of inputs to unit i in layer

l and a
(l)
i be the activation of the same unit. The computation

in this neural network can be given by forward propagation

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 11,2020 at 13:42:11 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: SIMULTANEOUS BEARING FAULT RECOGNITION AND RUL PREDICTION USING JL-CNN 91

Fig. 3. JL-CNN architecture applied in this paper.

algorithm as

z(2) = W (1)x + b(1)

a(2) = f(z(2))

z(3) = W (2)a(2) + b(2)

hW,b(x) = a(3) = f(z(3)). (6)

More generally, this step can be written as

z(l+1) = W (l)a(l) + b(1)

a(l+1) = f(z(l+1)). (7)

The optimization problem in neural network and CNN is to
minimize J(W, b) as a function of parameters W and b

arg min
W,b

J(W, b). (8)

Based on a(l) and z(l) calculated by forward propagation
algorithm in (9), the error term δ(nl ) of output layer can be
given by

δ(nl ) = −(y − a(nl )) · f ′(z(nl )). (9)

Then, for l = nl − 1, nl − 2, . . . , 2, the error term of each layer
can be given by

δl = ((W (l))T δ(l+1)) · f ′(zl). (10)

The desired partial derivatives can be computed as

∇W ( l ) J(W, b;x, y) = δ(l+1)(al)T

∇b( l ) J(W, b;x, y) = δ(l+1) . (11)

Let gt denotes the gradient vector at time t of the cost
function J(W, b;x, y); gt(W (l)) and gt(b(l)) denote the partial
derivatives of the cost function

gt(W (l)) = ∇W ( l ) J(W, b;x, y)

gt(b(l)) = ∇b( l ) J(W, b;x, y). (12)

Then, mt is the estimation of first moment (the mean) and vt

is the estimation of second moment (the uncentered variance)

of the gradients gt , respectively, which can be described as

mt(W (l)) = β1mt−1 + (1− β1)gt(W (l))

vt(W (l)) = β2vt−1 + (1− β2)gt(W (l))2 (13)

and

mt(b(l)) = β1mt−1 + (1− β1)gt(b(l))

vt(b(l)) = β2vt−1 + (1− β2)gt(b(l))2 (14)

where β1, β2 ∈ [0, 1]. m0 and v0 are initialized as zero vectors.
To avoid them being biased toward zero especially in the ini-
tial iterations, a bias correction is computed on these moment
estimations

m̂t(W (l)) =
mt(W (l))

1− βt
1

v̂t(W (l)) =
vt(W (l))
1− βt

2
(15)

and

m̂t(b(l)) =
mt(b(l))
1− βt

1

v̂t(b(l)) =
vt(b(l))
1− βt

2
. (16)

The vector v̂t represents an approximation of the diagonal of
the Fisher information matrix. The parameters can be updated
by the Adam rule as

θt+1 = θt − η√
v̂t + ε

m̂t . (17)

More specifically

W
(l)
t+1 = W

(l)
t −

η√
v̂t(W (l)) + ε

m̂t(W (l))

b
(l)
t+1 = b

(l)
t −

η√
v̂t(b(l)) + ε

m̂t(b(l)) (18)

where η is the step size and ε is a small positive constant used
to avoid the division for zero.

To train the JL-CNN, we can now repeatedly take steps of
Adam algorithm to reduce the cost function J(W, b) until the
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Algorithm 1: Joint-Loss Function Optimization Algorithm.
Input:
Training set D = {(x(i) , y(i))}, i = 1, . . . ,m;
Learning step η;
Exponential decay rates β1, β2 ∈ [0, 1];
Joint loss function J(W, b).
Initialization:
Initialize parameters W and b in the range of (0, 1);
Initialize 1st moment vector: m0 ← 0;
Initialize 2nd moment vector: v0 ← 0;
Initialize timestep: t← 0.
While:
Wt and bt not converged t← t + 1;
Compute the activations a

(l)
i at timestep t by forward

propagation algorithm in (10);
Compute the error term δ(nl ) of output layer by (12);
Compute the error term δl of every layer by (13);
Compute the desired partial derivatives ∇W ( l ) J(W, b) and
∇b( l ) J(W, b) by (14);
gt(W (l))← ∇W ( l ) J(W, b;x, y);
gt(b(l))← ∇b( l ) J(W, b;x, y);
mt ← β1mt−1 + (1− β1)gt ;
vt ← β2vt−1 + (1− β2)g2

t ;
m̂t ← mt/(1− βt

1);
v̂t ← vt/(1− βt

2);
W

(l)
t+1 ←W

(l)
t − η · m̂t(W (l))/(

√
v̂t(W (l)) + ε);

b
(l)
t+1 ← b

(l)
t − η · m̂t(b(l))/(

√
v̂t(b(l)) + ε);

Until the termination condition is satisfied;
Output:
A CNN with optimized parameters.

exit condition is reached. The complete process of the training
algorithm is summarized in Algorithm 1.

IV. CASE STUDY

A. Experimental Setup and Dataset Description

The experimental run-to-failure data were generated from
Prognostics Center of Excellence through prognostic data repos-
itory contributed by Intelligent Maintenance System, University
of Cincinnati [45]. This is because this dataset is widely used
for RUL prediction, and thus the performance of the proposed
method can be easily compared and verified. Bearing test rig
consists of four bearings that were installed on one shaft, as pre-
sented in Fig. 4. The rotation speed of shaft was kept constantly
at 2000 r/min and a radial load of 26 689 N was placed onto
the shaft and bearing by a spring mechanism. The bearings used
are Rexnord ZA-115 double row bearings. The vibration signals
were acquired by eight accelerometers from PCB 353B33 that
were installed at vertical and horizontal directions. Four thermo-
couples were also installed in the outer race of each bearing to
record bearing temperature for monitoring lubrication purposes.
Vibrations signals were collected every 10 min. Sampling fre-
quency is 20 kHz and the data length is 20 480 points.

Fig. 4. Bearing test rig and sensor placement illustration.

TABLE I
TRAINING AND TESTING SAMPLES

In this experiment, a sample is constructed by 2048 points.
There are two bearing run-to-failure datasets used in this experi-
ment: the first one is inner-race fault of bearing 3; the second one
is outer-race fault of bearing 1. 70% of the samples are selected
randomly for training, and the rest 30% samples are used for
testing. The numbers of training and testing samples are given
in Table I. For fault diagnosis task, the labels of the inner-race
fault samples are set to be 0; and the labels of the outer-race
fault samples are set to be 1. For RUL prediction task, the labels
are set from 1 linear decrease to 0 after the incipient fault point
(IFP). Since

RULrelative =
RULcurrent

total degradation time
(19)

where the total degradation time is a constant, and current RUL is
a linear function. So, the relative RUL should be a linear function
as well. In this paper, the IFP is detected by the method proposed
in [46]: the threshold is set to be mean(rms)± (6× σ). Where
mean (rms) is the mean value of the rms before fault failure
occurrence. For the first dataset, the rms values between 500
and 1000 min are used to calculate the mean (rms). For the
second dataset, the rms values between 0 and 400 min are used
to calculate the mean (rms). When the rms of current sample
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Fig. 5. IFP selection result of (a) dataset 1 and (b) dataset 2. The hori-
zon red line represents the rms threshold. The vertical red line represents
the time point of IFP. The blue line represents the rms trend.

Fig. 6. Flowchart of the proposed method.

is larger than the threshold, the system is detected to begin to
degrade, and the current point is set to be the IFP. When the rms
of current sample is bigger than 0.35 g, the system is detected
as failure. Based on this method, the IFP of the two datasets are
set to be 1848 and 534 min, respectively, as shown in Fig. 5.

B. Results and Comparisons

After data collection, the proposed framework is utilized to
analyze the collected samples. The flowchart of the proposed
method is shown in Fig. 6. The algorithm is implemented by
Python based on GPU NVIDIA GTX 1060 6G and CPU Intel I7
6700. The platform is Pytorch1.0. The CNN model is trained 100

Fig. 7. MSE loss of the JL-CNN method by varying the weighting
parameter λ.

epochs, which costs about 400 s. It takes a short time to analyze
a single sample, which is less than 1 s. Because fault diagnosis
task is relatively simple, both the training accuracy and the test
accuracy are all 100%. Therefore, this task will not be discussed
later. Since there is an additional parameter λ in the JL function,
whose value will influence the performance of the proposed
method, we first exploited the loss of the JL-CNN method with
different λ. Fig. 7 shows the prediction accuracy trend on the
test set with the change of λ. The loss of diagnosis task is
small, which is around 1× 10−5, so there is no tradeoff problem
in this experiment. It clearly shows that when λ ∈ [0.1, 0.5],
the loss of the JL-CNN has all been decreased. The optimal
range may vary from problem to problem. When λ = 0.25, the
proposed framework gets the best performance. As was inferred
before, when λ = 0, the JL function becomes MSE loss function,
and the network is a CNN model only for RUL prediction.
It can be seen that the corresponding loss has been increased
about 35% compared with the architecture when λ = 0.25. This
phenomenon can be explained from the view of the network
architecture: when only the RUL prediction network is used
(λ = 0), the learned features trend to decrease the RUL training
error, which may lead to overfitting because there is only one
task; when both MSE and cross-entropy loss functions are both
contained in the JL function (λ = 0.25), the learned features
trend to satisfy both tasks, therefore decreasing the overfitting
risk and obtain a higher test accuracy; when λ further increases
towards infinity, only the fault diagnosis network is used and
the test loss will increase again.

The loss trends of training and testing datasets are graphically
illustrated in Fig. 8. The red line represents the loss curve when
λ = 0.25; the blue line represents the loss trend when λ = 0.
It can be seen that when λ = 0.25, both training and testing
loss curves converge slower than λ = 0. This is because when
λ = 0.25, the JL function is constructed by two loss functions
that can lead to a slow convergence speed because there are two
loss functions that need to be trained. But, the final test accuracy
will be higher due to the improved generalization ability, which
is also proved in Fig. 8. In addition, the loss trends of train-
ing dataset and test dataset are similar with each other, which
illustrates that there is no overfitting problem.

The RUL prediction results of the two datasets with different
λ are shown in Fig. 9. The red lines in Fig. 9 represent the
real RUL. It can be seen that the degradation trends of both the
inner-race fault in Fig. 9(a) and the outer-race fault in Fig. 9(b)
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Fig. 8. Loss trends of (a) training and (b) testing datasets. The red line
represents the loss trend when λ = 0.25. The blue line represents the
loss trend when λ = 0.

Fig. 9. RUL prediction results of (a) dataset 1 and (b) dataset 2. The
red line represents the real RUL. The blue points represent the predicted
RUL when λ = 0.25. The green points represent the predicted RUL when
λ = 0 that the network becomes a traditional CNN architecture.

have been extracted successfully. When λ = 0, the network is a
traditional CNN, which is represented as green points in Fig. 9.
When λ = 0.25, the network is a JL-CNN, which is represented
as blue points. It can be seen that the blue points are closer to the
real RUL. Compared with green points, blue points are closer
to and more concentrated on real RUL line.

Fig. 10. SVR RUL prediction results of (a) dataset 1 and (b) dataset
2. The red line represents the real RUL. The blue points represent the
predicted RUL.

Fig. 11. HI-based RUL prediction results of (a) dataset 1 and
(b) dataset 2. The red line represents the real RUL. The blue points
represent the predicted RUL.

To verify the effectiveness of the proposed method, SVR,
which is a widely used RUL prediction method, is also applied
to analyze the same data, and the results are shown in Fig. 10.
11 statistic features such as rms and kurtosis are used as the
input of SVR. In addition, a state-of-the-art health index (HI)
based prognostics method [1] is also applied in this paper for
comparison. The results are shown in Fig. 11. It can be seen that
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TABLE II
MSE LOSS OF SVR, HI-BASED METHOD, CNN, AND THE

PROPOSED METHOD

SVR performs worst. The prediction result of dataset 1 is too
decentralized to be applied in practical industrial systems and
the result of dataset 2 is not as decentralized as the first one,
but still far from real RUL. The HI-based prediction method
performs better than SVR, but the prediction results of the two
datasets still show high standard deviation. It can be seen from
Fig. 9 that the proposed method can provide both a high predic-
tion accuracy and a low dispersity. This is because the feature
extracted by the deep network can be more representative than
statistic features, meanwhile the shared network can enlarge the
generalization of the proposed method, and therefore increase
the test accuracy.

For a more intuitive comparison, MSE is used as the predic-
tion index. The MSE loss of SVR, HI-based method, CNN when
λ = 0, and JL-CNN when λ = 0.25 are given in Table II. The
MSE of the JL-CNN decreases 82.7% compared with SVR and
decreases 24.9% compared with traditional CNN, which also
verify the effectiveness and superiority of the proposed frame-
work. In addition, it can be seen that there is huge variability
between these two datasets, not only in the failure time, but also
in the failure type and degradation pattern. That is, at the end
of each experiment, one bearing is identified as outer-race fault
and another one as inner-ring fault. One of the bearing degrades
quickly and the other degrades slowly as shown in Fig. 5. Since
the proposed method still performs well even though there is
huge variability between these two experiments, the robustness
and generalization of the proposed method can be verified. The
main limitation of the proposed method is the requirement of
more than one training datasets. If there is one training dataset,
there will be only one label of diagnosis task, which makes the
model unable to be trained.

V. CONCLUSION

In this paper, a novel deep learning-based approach was
proposed for simultaneous bearing fault diagnosis and RUL
prediction in this paper, which is named the JL-CNN. This
approach constructed a deep network by sharing partial net-
work and constructing a JL function, which could not only
learn the multiple tasks in parallel, but also could improve
the performance of both tasks by sharing features. To verify
its practicality in industrial systems, the proposed method was
applied to analyze two run-to-failure bearing datasets. Com-
pared with traditional fault diagnosis or RUL prediction meth-
ods, it did not require predetermined feature selection and was
less likely to overfitting. Because of the feature sharing strat-
egy, the proposed method could make full use of the informa-
tion and improve the accuracy of both tasks. In addition, the
experimental results showed that the JL-CNN method could

increase the accuracy of both tasks compared with the deep
network only for single task, which illustrates the effectiveness
of the JL architecture.

There is still some work needed to improve the proposed ar-
chitecture. First, the selection of parameter λ was an important
issue when applying the proposed approach; second, the con-
struction of the JL-CNN was also a difficult problem in practical
applications; third, evolutionary computation methods could be
used to optimize the network parameters, and subsequently im-
prove the performance. Since there were only two specimens
in this paper, more training dataset could be helpful to improve
the performance and train a more generalized model. The pro-
posed method could not only be trained by one dataset because
the output labels were corresponding to different failure and the
network could not be trained with only one output label, which
was another limitation. At the same time, cross validation could
be helpful to improve the generalization and reduce the risk of
overfitting. Since the performance of the proposed method was
stable, cross validation did not apply in this paper. But, it could
be a helpful tool in real applications. To enlarge the possible
applications of the proposed method, our further work would
focus on some techniques that can solve these problems.
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